664 research outputs found

    Untitled

    Get PDF

    Vision

    Get PDF

    Exogenously added GPI-anchored tissue inhibitor of matrix metal loproteinase-1 (TIMP-1) displays enhanced and novel biological activities

    Get PDF
    The family of tissue inhibitors of metalloproteinases (TIMPs) exhibits diverse physiological/biological functions including the inhibition of active matrix metalloproteinases, regulation of proMMP activation, cell growth, and the modulation of angiogenesis. TIMP-1 is a secreted protein that can be detected on the cell surface through its interaction with surface proteins. The diverse biological functions of TIMP-1 are thought to lie, in part, in the kinetics of TIMP-1/MMP/surface protein interactions. Proteins anchored by glycoinositol phospholipids (GPIs), when purified and added to cells in vitro, are incorporated into their surface membranes. A GPI anchor was fused to TIMP-1 to generate a reagent that could be added directly to cell membranes and thus focus defined concentrations of TIMP-1 protein on any cell surface independent of protein-protein interaction. Unlike native TIMP-1, exogenously added GPI-anchored TIMP-1 protein effectively blocked release of MMP-2 and MMP-9 from osteosarcoma cells. TIMP-1-GP1 was a more effective modulator of migration and proliferation than TIMP-1. While control hTIMP-1 protein did not significantly affect migration of primary microvascular endothelial cells at the concentrations tested, the GPI-anchored TIMP-1 protein showed a pronounced suppression of endothelial cell migration in response to bFGF. In addition, TIMP-1-GPI was more effective at inducing microvascular endothelial proliferation. In contrast, fibroblast proliferation was suppressed by the agent. Reagents based on this method should assist in the dissection of the protease cascades and activities involved in TIMP biology. Membrane-fixed TIMP-1 may represent a more effective version of the protein for use in therapeutic expression

    Expression of a glycosylphosphatidylinositol-anchored ligand, growth hormone, blocks receptor signalling

    Get PDF
    We have investigated the interaction between GH (growth hormone) and GHR (GH receptor). We previously demonstrated that a truncated GHR that possesses a transmembrane domain but no cytoplasmic domain blocks receptor signalling. Based on this observation we investigated the impact of tethering the receptor's extracellular domain to the cell surface using a native lipid GPI (glycosylphosphatidylinositol) anchor. We also investigated the effect of tethering GH, the ligand itself, to the cell surface and demonstrated that tethering either the ecGHR (extracellular domain of GHR) or the ligand itself to the cell membrane via a GPI anchor greatly attenuates signalling. To elucidate the mechanism for this antagonist activity, we used confocal microscopy to examine the fluorescently modified ligand and receptor. GH–GPI was expressed on the cell surface and formed inactive receptor complexes that failed to internalize and blocked receptor activation. In conclusion, contrary to expectation, tethering an agonist to the cell surface can generate an inactive hormone receptor complex that fails to internalize

    Decay-accelerating factor modulates induction of T cell immunity

    Get PDF
    Decay-accelerating factor (Daf) dissociates C3/C5 convertases that assemble on host cells and thereby prevents complement activation on their surfaces. We demonstrate that during primary T cell activation, the absence of Daf on antigen-presenting cells (APCs) and on T cells enhances T cell proliferation and augments the induced frequency of effector cells. The effect is factor D- and, at least in part, C5-dependent, indicating that local alternative pathway activation is essential. We show that cognate T cell–APC interactions are accompanied by rapid production of alternative pathway components and down-regulation of Daf expression. The findings argue that local alternative pathway activation and surface Daf protein function respectively as a costimulator and a negative modulator of T cell immunity and explain previously reported observations linking complement to T cell function. The results could have broad therapeutic implications for disorders in which T cell immunity is important

    The role of the complement system in traumatic brain injury: a review

    Get PDF
    Traumatic brain injury (TBI) is an important cause of disability and mortality in the western world. While the initial injury sustained results in damage, it is the subsequent secondary cascade that is thought to be the significant determinant of subsequent outcomes. The changes associated with the secondary injury do not become irreversible until some time after the start of the cascade. This may present a window of opportunity for therapeutic interventions aiming to improve outcomes subsequent to TBI. A prominent contributor to the secondary injury is a multifaceted inflammatory reaction. The complement system plays a notable role in this inflammatory reaction; however, it has often been overlooked in the context of TBI secondary injury. The complement system has homeostatic functions in the uninjured central nervous system (CNS), playing a part in neurodevelopment as well as having protective functions in the fully developed CNS, including protection from infection and inflammation. In the context of CNS injury, it can have a number of deleterious effects, evidence for which primarily comes not only from animal models but also, to a lesser extent, from human post-mortem studies. In stark contrast to this, complement may also promote neurogenesis and plasticity subsequent to CNS injury. This review aims to explore the role of the complement system in TBI secondary injury, by examining evidence from both clinical and animal studies. We examine whether specific complement activation pathways play more prominent roles in TBI than others. We also explore the potential role of complement in post-TBI neuroprotection and CNS repair/regeneration. Finally, we highlight the therapeutic potential of targeting the complement system in the context of TBI and point out certain areas on which future research is needed

    Tritium labelling of a cholesterol amphiphile designed for cell membrane anchoring of proteins.

    Get PDF
    Cell membrane association of proteins can be achieved by the addition of lipid moieties to the polypeptide chain, and such lipid-modified proteins have important biological functions. A class of cell surface proteins contains a complex glycosylphosphatidylinositol (GPI) glycolipid at the C-terminus, and they are accumulated in cholesterol-rich membrane microdomains, that is, lipid rafts. Semisynthetic lipoproteins prepared from recombinant proteins and designed lipids are valuable probes and model systems of the membrane-associated proteins. Because GPI-anchored proteins can be reinserted into the cell membrane with the retention of the biological function, they are appropriate candidates for preparing models via reduction of the structural complexity. A synthetic headgroup was added to the 3beta-hydroxyl group of cholesterol, an essential lipid component of rafts, and the resulting cholesterol derivative was used as a simplified GPI mimetic. In order to quantitate the membrane integrated GPI mimetic after the exogenous addition to live cells, a tritium labelled cholesterol anchor was prepared. The radioactive label was introduced into the headgroup, and the radiolabelled GPI mimetic anchor was obtained with a specific activity of 1.37 TBq/mmol. The headgroup labelled cholesterol derivative was applied to demonstrate the sensitive detection of the cell membrane association of the anchor under in vivo conditions
    corecore