7 research outputs found

    Lightcurve and spectral modelling of the Type IIb SN 2020acat. Evidence for a strong Ni bubble effect on the diffusion time

    Full text link
    We use the light curve and spectral synthesis code JEKYLL to calculate a set of macroscopically mixed Type IIb supernova (SN) models, which are compared to both previously published and new late-phase observations of SN 2020acat. The models differ in the initial mass, the radial mixing and expansion of the radioactive material, and the properties of the hydrogen envelope. The best match to the photospheric and nebular spectra and lightcurves of SN 2020acat is found for a model with an initial mass of 17 solar masses, strong radial mixing and expansion of the radioactive material, and a 0.1 solar mass hydrogen envelope with a low hydrogen mass-fraction of 0.27. The most interesting result is that strong expansion of the clumps containing radioactive material seems to be required to fit the observations of SN 2020acat both in the diffusion phase and the nebular phase. These "Ni bubbles" are expected to expand due to heating from radioactive decays, but the degree of expansion is poorly constrained. Without strong expansion there is a tension between the diffusion phase and the subsequent evolution, and models that fit the nebular phase produce a diffusion peak that is too broad. The diffusion phase lightcurve is sensitive to the expansion of the "Ni bubbles", as the resulting Swiss-cheese-like geometry decreases the effective opacity and therefore the diffusion time. This effect has not been taken into account in previous lightcurve modelling of stripped-envelope SNe, which may lead to a systematic underestimate of their ejecta masses. It should be emphasized, though, that JEKYLL is limited to a geometry that is spherically symmetric on average, and large-scale asymmetries may also play a role. The relatively high initial mass found for the progenitor of SN 2020acat places it at the upper end of the mass distribution of Type IIb SN progenitors, and a single star origin can not be excluded.Comment: Accepted for publication by Astronomy and Astrophysic

    Mitochondrial Calcium Buffering Contributes to the Maintenance of Basal Calcium Levels in Mouse Taste Cells

    No full text
    Taste stimuli are detected by taste receptor cells present in the oral cavity using diverse signaling pathways. Some taste stimuli are detected by G protein–coupled receptors (GPCRs) that cause calcium release from intracellular stores, whereas other stimuli depolarize taste cells to cause calcium influx through voltage-gated calcium channels (VGCCs). Although taste cells use two distinct mechanisms to transmit taste signals, increases in cytosolic calcium are critical for normal responses in both pathways. This creates a need to tightly control intracellular calcium levels in all transducing taste cells. To date, however, the mechanisms used by taste cells to regulate cytosolic calcium levels have not been identified. Studies in other cell types have shown that mitochondria can be important calcium buffers, even during small changes in calcium loads. In this study, we used calcium imaging to characterize the role of mitochondria in buffering calcium levels in taste cells. We discovered that mitochondria make important contributions to the maintenance of resting calcium levels in taste cells by routinely buffering a constitutive calcium influx across the plasma membrane. This is unusual because in other cell types, mitochondrial calcium buffering primarily affects large evoked calcium responses. We also found that the amount of calcium that is buffered by mitochondria varies with the signaling pathways used by the taste cells. A transient receptor potential (TRP) channel, likely TRPV1 or a taste variant of TRPV1, contributes to the constitutive calcium influx

    Myostatin from the American lobster, Homarus americanus: cloning and effects of molting on expression in skeletal muscles

    No full text
    A cDNA encoding a myostatin (Mstn)-like gene from an astacuran crustacean, Homarus americanus, was cloned and characterized. Mstn inhibits skeletal muscle growth in vertebrates and may play a role in crustacean muscle as a suppressor of protein synthesis. Sequence analysis and three-dimensional modeling of the Ha-Mstn protein predicted a high degree of conservation with vertebrate and other invertebrate myostatins. Qualitative polymerase chain reaction (PCR) demonstrated ubiquitous expression of transcript in all tissues, including skeletal muscles. Quantitative PCR analysis was used to determine the effects of natural molting and eyestalk ablation (ESA) on Ha-Mstn expression in the cutter claw (CT) and crusher claw (CR) closer muscles and deep abdominal (DA) muscle. In intermolt lobsters, the Ha-Mstn mRNA level in the DA muscle was significantly lower than the mRNA levels in the CT and CR muscles. Spontaneous molting decreased Ha-Mstn mRNA during premolt, with the CR muscle, which is composed of slow-twitch (S1) fibers, responding preferentially (82% decrease) to the atrophic signal compared to fast fibers in CT (51% decrease) and DA (69% decrease) muscles. However, acute increases in circulating ecdysteroids caused by ESA had no effect on Ha-Mstn mRNA levels in the three muscles. These data indicate that the transcription of Ha-Mstn is differentially regulated during the natural molt cycle and it is an important regulator of protein turnover in molt-induced claw muscle atrophy

    Ground-based and JWST Observations of SN 2022pul: II. Evidence from Nebular Spectroscopy for a Violent Merger in a Peculiar Type-Ia Supernova

    No full text
    International audienceWe present an analysis of ground-based and JWST observations of SN 2022pul, a peculiar "03fg-like" (or "super-Chandrasekhar") Type Ia supernova (SN Ia), in the nebular phase at 338 d post explosion. Our combined spectrum continuously covers 0.4-14 μ\mum and includes the first mid-infrared spectrum of an 03fg-like SN Ia. Compared to normal SN Ia 2021aefx, SN 2022pul exhibits a lower mean ionization state, asymmetric emission-line profiles, stronger emission from the intermediate-mass elements (IMEs) argon and calcium, weaker emission from iron-group elements (IGEs), and the first unambiguous detection of neon in a SN Ia. Strong, broad, centrally peaked [Ne II] at 12.81 μ\mum was previously predicted as a hallmark of "violent merger'' SN Ia models, where dynamical interaction between two sub-MChM_{\text{Ch}} white dwarfs (WDs) causes disruption of the lower mass WD and detonation of the other. The violent merger scenario was already a leading hypothesis for 03fg-like SNe Ia; in SN 2022pul it can explain the large-scale ejecta asymmetries seen between the IMEs and IGEs and the central location of narrow oxygen and broad neon. We modify extant models to add clumping of the central ejecta to better reproduce the optical iron emission, and add mass in the innermost region (<2000< 2000 km s1^{-1}) to account for the observed narrow [O I] λλ6300\lambda\lambda6300, 6364 emission. A violent WD-WD merger explains many of the observations of SN 2022pul, and our results favor this model interpretation for the subclass of 03fg-like SN Ia

    Ground-based and JWST Observations of SN 2022pul: I. Unusual Signatures of Carbon, Oxygen, and Circumstellar Interaction in a Peculiar Type Ia Supernova

    No full text
    International audienceNebular-phase observations of peculiar Type Ia supernovae (SNe Ia) provide important constraints on progenitor scenarios and explosion dynamics for both these rare SNe and the more common, cosmologically useful SNe Ia. We present observations from an extensive ground-based and space-based follow-up campaign to characterize SN 2022pul, a "super-Chandrasekhar" mass SN Ia (alternatively "03fg-like" SN), from before peak brightness to well into the nebular phase across optical to mid-infrared (MIR) wavelengths. The early rise of the light curve is atypical, exhibiting two distinct components, consistent with SN Ia ejecta interacting with dense carbon-oxygen rich circumstellar material (CSM). In the optical, SN 2022pul is most similar to SN 2012dn, having a low estimated peak luminosity (MB=18.9M_{B}=-18.9 mag) and high photospheric velocity relative to other 03fg-like SNe. In the nebular phase, SN 2022pul adds to the increasing diversity of the 03fg-like subclass. From 168 to 336 days after peak BB-band brightness, SN 2022pul exhibits asymmetric and narrow emission from [O I] λλ6300, 6364\lambda\lambda 6300,\ 6364 (FWHM2,000{\rm FWHM} \approx 2{,}000 km s1^{-1}), strong, broad emission from [Ca II] λλ7291, 7323\lambda\lambda 7291,\ 7323 (FWHM7,300{\rm FWHM} \approx 7{,}300 km s1^{-1}), and a rapid Fe III to Fe II ionization change. Finally, we present the first-ever optical-to-mid-infrared (MIR) nebular spectrum of an 03fg-like SN Ia using data from JWST. In the MIR, strong lines of neon and argon, weak emission from stable nickel, and strong thermal dust emission (with T500T \approx 500 K), combined with prominent [O I] in the optical, suggest that SN 2022pul was produced by a white dwarf merger within carbon/oxygen-rich CSM

    A JWST Near- and Mid-infrared Nebular Spectrum of the Type Ia Supernova 2021aefx

    No full text
    We present JWST near-infrared (NIR) and mid-infrared (MIR) spectroscopic observations of the nearby normal Type Ia supernova (SN) SN 2021aefx in the nebular phase at +255 days past maximum light. Our Near Infrared Spectrograph (NIRSpec) and Mid Infrared Instrument observations, combined with ground-based optical data from the South African Large Telescope, constitute the first complete optical+NIR+MIR nebular SN Ia spectrum covering 0.3–14 μ m. This spectrum unveils the previously unobserved 2.5−5 μ m region, revealing strong nebular iron and stable nickel emission, indicative of high-density burning that can constrain the progenitor mass. The data show a significant improvement in sensitivity and resolution compared to previous Spitzer MIR data. We identify numerous NIR and MIR nebular emission lines from iron-group elements as well as lines from the intermediate-mass element argon. The argon lines extend to higher velocities than the iron-group elements, suggesting stratified ejecta that are a hallmark of delayed-detonation or double-detonation SN Ia models. We present fits to simple geometric line profiles to features beyond 1.2 μ m and find that most lines are consistent with Gaussian or spherical emission distributions, while the [Ar iii ] 8.99 μ m line has a distinctively flat-topped profile indicating a thick spherical shell of emission. Using our line profile fits, we investigate the emissivity structure of SN 2021aefx and measure kinematic properties. Continued observations of SN 2021aefx and other SNe Ia with JWST will be transformative to the study of SN Ia composition, ionization structure, density, and temperature, and will provide important constraints on SN Ia progenitor and explosion models

    Ground-based and JWST Observations of SN 2022pul: II. Evidence from Nebular Spectroscopy for a Violent Merger in a Peculiar Type-Ia Supernova

    No full text
    International audienceWe present an analysis of ground-based and JWST observations of SN 2022pul, a peculiar "03fg-like" (or "super-Chandrasekhar") Type Ia supernova (SN Ia), in the nebular phase at 338 d post explosion. Our combined spectrum continuously covers 0.4-14 μ\mum and includes the first mid-infrared spectrum of an 03fg-like SN Ia. Compared to normal SN Ia 2021aefx, SN 2022pul exhibits a lower mean ionization state, asymmetric emission-line profiles, stronger emission from the intermediate-mass elements (IMEs) argon and calcium, weaker emission from iron-group elements (IGEs), and the first unambiguous detection of neon in a SN Ia. Strong, broad, centrally peaked [Ne II] at 12.81 μ\mum was previously predicted as a hallmark of "violent merger'' SN Ia models, where dynamical interaction between two sub-MChM_{\text{Ch}} white dwarfs (WDs) causes disruption of the lower mass WD and detonation of the other. The violent merger scenario was already a leading hypothesis for 03fg-like SNe Ia; in SN 2022pul it can explain the large-scale ejecta asymmetries seen between the IMEs and IGEs and the central location of narrow oxygen and broad neon. We modify extant models to add clumping of the central ejecta to better reproduce the optical iron emission, and add mass in the innermost region (<2000< 2000 km s1^{-1}) to account for the observed narrow [O I] λλ6300\lambda\lambda6300, 6364 emission. A violent WD-WD merger explains many of the observations of SN 2022pul, and our results favor this model interpretation for the subclass of 03fg-like SN Ia
    corecore