48 research outputs found

    Characterization of Seven Transmembrane Domain Receptor Gene Expression in Olfactory Receptor Neurons.

    Get PDF
    The expression of 7 transmembrane domain receptors in olfactory receptor neurons of the channel catfish, Ictalurus punctatus was characterized. Due to disagreements in the literature as to how many odorant receptor genes are expressed in olfactory neurons, this study directly measured the number of odorant receptor gene transcripts expressed in single olfactory neurons. Individual olfactory receptor neurons can express more than one receptor, with some neurons expressing at least 3 to 4 receptors. These findings correlate with electrophysiological evidence but disagree with conclusions based on in situ hybridization. Receptors similar to odorant receptors are also expressed in taste buds, indicating a possible role for these receptors as detectors of taste stimuli. The odorant receptors may belong to a larger group of chemoreceptors that function as detectors of various signals depending on the cell in which they are expressed. The expression of metabotropic glutamate receptors (mGluR) in olfactory receptor neurons was also characterized. Two subtypes of these receptors, mGluR1 and mGluR3, were found in olfactory receptor neurons. These receptors were coexpressed with each other and with odorant receptors. Immunocytochemical analysis determined that these receptors were localized in the dendritic knobs and cilia of the neurons and electrophysiological evidence indicated that these receptors affected the response to the glutamate odorant. These findings support the hypothesis that mGluRs may have a function in olfaction. The last aim of this dissertation characterized the phosphorylation of the odorant and mGluRs by protein kinase C (PKC). An in vitro assay was used to determine if the PKCs known to be expressed in olfactory receptor neurons, PKCΞ²\beta and PKCΞ΄\delta, phosphorylate a consensus site found on both receptors. It was shown that mGluRs were phosphorylated by PKCΞ²\beta and PKCΞ΄\delta, with higher phosphorylation occurring by PKCΞ²\beta. PKC may thus function to desensitize mGluRs in vivo. The consensus site on the odorant receptor was only phosphorylated by PKCΞ΄\delta. This site is located on extracellular loop 2 of the odorant receptor and when phosphorylated may function as a targeting signal during processing of the receptor

    Regulation of AURORA B function by mitotic checkpoint protein MAD2

    Get PDF
    Cell cycle checkpoint signaling stringently regulates chromosome segregation during cell division. MAD2 is one of the key components of the spindle and mitotic checkpoint complex that regulates the fidelity of cell division along with MAD1, CDC20, BUBR1, BUB3 and MAD3. MAD2 ablation leads to erroneous attachment of kinetochore-spindle fibers and defective chromosome separation. A potential role for MAD2 in the regulation of events beyond the spindle and mitotic checkpoints is not clear. Together with active spindle assembly checkpoint signaling, AURORA B kinase activity is essential for chromosome condensation as cells enter mitosis. AURORA B phosphorylates histone H3 at serine 10 and serine 28 to facilitate the formation of condensed metaphase chromosomes. In the absence of functional AURORA B cells escape mitosis despite the presence of misaligned chromosomes. In this study we report that silencing of MAD2 results in a drastic reduction of metaphase-specific histone H3 phosphorylation at serine 10 and serine 28. We demonstrate that this is due to mislocalization of AURORA B in the absence of MAD2. Conversely, overexpression of MAD2 concentrated the localization of AURORA B at the metaphase plate and caused hyper-phosphorylation of histone H3. We find that MAD1 plays a minor role in influencing the MAD2-dependent regulation of AURORA B suggesting that the effects of MAD2 on AURORA B are independent of the spindle checkpoint complex. Our findings reveal that, in addition to its role in checkpoint signaling, MAD2 ensures chromosome stability through the regulation of AURORA B

    Regulation of AURORA B function by mitotic checkpoint protein MAD2

    Get PDF
    <p>Cell cycle checkpoint signaling stringently regulates chromosome segregation during cell division. MAD2 is one of the key components of the spindle and mitotic checkpoint complex that regulates the fidelity of cell division along with MAD1, CDC20, BUBR1, BUB3 and MAD3. MAD2 ablation leads to erroneous attachment of kinetochore-spindle fibers and defective chromosome separation. A potential role for MAD2 in the regulation of events beyond the spindle and mitotic checkpoints is not clear. Together with active spindle assembly checkpoint signaling, AURORA B kinase activity is essential for chromosome condensation as cells enter mitosis. AURORA B phosphorylates histone H3 at serine 10 and serine 28 to facilitate the formation of condensed metaphase chromosomes. In the absence of functional AURORA B cells escape mitosis despite the presence of misaligned chromosomes. In this study we report that silencing of MAD2 results in a drastic reduction of metaphase-specific histone H3 phosphorylation at serine 10 and serine 28. We demonstrate that this is due to mislocalization of AURORA B in the absence of MAD2. Conversely, overexpression of MAD2 concentrated the localization of AURORA B at the metaphase plate and caused hyper-phosphorylation of histone H3. We find that MAD1 plays a minor role in influencing the MAD2-dependent regulation of AURORA B suggesting that the effects of MAD2 on AURORA B are independent of the spindle checkpoint complex. Our findings reveal that, in addition to its role in checkpoint signaling, MAD2 ensures chromosome stability through the regulation of AURORA B.</p

    Group I metabotropic glutamate receptors are expressed in the chicken retina and by cultured retinal amacrine cells

    Get PDF
    Glutamate is well established as an excitatory neurotransmitter in the vertebrate retina. Its role as a modulator of retinal function, however, is poorly understood. We used immunocytochemistry and calcium imaging techniques to investigate whether metabotropic glutamate receptors are expressed in the chicken retina and by identified GABAergic amacrine cells in culture. Antibody labeling for both metabotropic glutamate receptors 1 and 5 in the retina was consistent with their expression by amacrine cells as well as by other retinal cell types. In double-labeling experiments, most metabotropic glutamate receptor 1-positive cell bodies in the inner nuclear layer also label with anti-GABA antibodies. GABAergic amacrine cells in culture were also labeled by metabotropic glutamate receptor 1 and 5 antibodies. Metabotropic glutamate receptor agonists elicited Ca2+ elevations in cultured amacrine cells, indicating that these receptors were functionally expressed. Cytosolic Ca2+ elevations were enhanced by metabotropic glutamate receptor 1-selective antagonists, suggesting that metabotropic glutamate receptor 1 activity might normally inhibit the Ca2+ signaling activity of metabotropic glutamate receptor 5. These results demonstrate expression of group I metabotropic glutamate receptors in the avian retina and suggest that glutamate released from bipolar cells onto amacrine cells might act to modulate the function of these cells

    AP1 transcription factors are required to maintain 1 the peripheral taste system

    Get PDF
    The sense of taste is used by organisms to achieve the optimal nutritional requirement and avoid potentially toxic compounds. In the oral cavity, taste receptor cells are grouped together in taste buds that are present in specialized taste papillae in the tongue. Taste receptor cells are the cells that detect chemicals in potential food items and transmit that information to gustatory nerves that convey the taste information to the brain. As taste cells are in contact with the external environment, they can be damaged and are routinely replaced throughout an organism's lifetime to maintain functionality. However, this taste cell turnover loses efficiency over time resulting in a reduction in taste ability. Currently, very little is known about the mechanisms that regulate the renewal and maintenance of taste cells. We therefore performed RNA-sequencing analysis on isolated taste cells from 2 and 6-month-old mice to determine how alterations in the taste cell-transcriptome regulate taste cell maintenance and function in adults. We found that the activator protein-1 (AP1) transcription factors (c-Fos, Fosb and c-Jun) and genes associated with this pathway were significantly downregulated in taste cells by 6 months and further declined at 12 months. We generated conditional c-Fos-knockout mice to target K14-expressing cells, including differentiating taste cells. c-Fos deletion caused a severe perturbation in taste bud structure and resulted in a significant reduction in the taste bud size. c-Fos deletion also affected taste cell turnover as evident by a decrease in proliferative marker, and upregulation of the apoptotic marker cleaved-PARP. Thus, AP1 factors are important regulators of adult taste cell renewal and their downregulation negatively impacts taste maintenance

    Macaw Cam: Exploratory Camera Trap Techniques for Monitoring and Conservation of Scarlet Macaw (Ara macao) Nests

    Get PDF
    In this study, we explored new, low-cost camera trap techniques to monitor Scarlet Macaws in one of their last two self-sustaining habitats in Costa Rica. Camera trap monitors have begun to produce new insights in avian research and we use them not only because Macaws are threatened, but their imagery can be used to enhance the public’s understanding of the connections between science and conservation efforts. We mounted camera units on two trees with nesting Macaws in Costa Rica’s Carara National Park and monitored one nest remotely for seven consecutive months

    Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25

    Get PDF
    BACKGROUND: Taste receptor cells are responsible for transducing chemical stimuli from the environment and relaying information to the nervous system. Bitter, sweet and umami stimuli utilize G-protein coupled receptors which activate the phospholipase C (PLC) signaling pathway in Type II taste cells. However, it is not known how these cells communicate with the nervous system. Previous studies have shown that the subset of taste cells that expresses the T2R bitter receptors lack voltage-gated Ca(2+ )channels, which are normally required for synaptic transmission at conventional synapses. Here we use two lines of transgenic mice expressing green fluorescent protein (GFP) from two taste-specific promoters to examine Ca(2+ )signaling in subsets of Type II cells: T1R3-GFP mice were used to identify sweet- and umami-sensitive taste cells, while TRPM5-GFP mice were used to identify all cells that utilize the PLC signaling pathway for transduction. Voltage-gated Ca(2+ )currents were assessed with Ca(2+ )imaging and whole cell recording, while immunocytochemistry was used to detect expression of SNAP-25, a presynaptic SNARE protein that is associated with conventional synapses in taste cells. RESULTS: Depolarization with high K(+ )resulted in an increase in intracellular Ca(2+ )in a small subset of non-GFP labeled cells of both transgenic mouse lines. In contrast, no depolarization-evoked Ca(2+ )responses were observed in GFP-expressing taste cells of either genotype, but GFP-labeled cells responded to the PLC activator m-3M3FBS, suggesting that these cells were viable. Whole cell recording indicated that the GFP-labeled cells of both genotypes had small voltage-dependent Na(+ )and K(+ )currents, but no evidence of Ca(2+ )currents. A subset of non-GFP labeled taste cells exhibited large voltage-dependent Na(+ )and K(+ )currents and a high threshold voltage-gated Ca(2+ )current. Immunocytochemistry indicated that SNAP-25 was expressed in a separate population of taste cells from those expressing T1R3 or TRPM5. These data indicate that G protein-coupled taste receptors and conventional synaptic signaling mechanisms are expressed in separate populations of taste cells. CONCLUSION: The taste receptor cells responsible for the transduction of bitter, sweet, and umami stimuli are unlikely to communicate with nerve fibers by using conventional chemical synapses

    Expression of GABAergic Receptors in Mouse Taste Receptor Cells

    Get PDF
    ) while it is terminated by the re-uptake of GABA through transporters (GATs).- immunoreactivity were detected in the peripheral taste receptor cells. We also used transgenic mice that express green fluorescent protein (GFP) in either the Type II taste cells, which can respond to bitter, sweet or umami taste stimuli, or in the Type III GAD67 expressing taste cells. Thus, we were able to identify that GABAergic receptors are expressed in some Type II and Type III taste cells. Mouse GAT4 labeling was concentrated in the cells surrounding the taste buds with a few positively labeled TRCs at the margins of the taste buds.The presence of GABAergic receptors localized on Type II and Type III taste cells suggests that GABA is likely modulating evoked taste responses in the mouse taste bud
    corecore