335 research outputs found

    MultiMetEval: comparative and multi-objective analysis of genome-scale metabolic models

    Get PDF
    Comparative metabolic modelling is emerging as a novel field, supported by the development of reliable and standardized approaches for constructing genome-scale metabolic models in high throughput. New software solutions are needed to allow efficient comparative analysis of multiple models in the context of multiple cellular objectives. Here, we present the user-friendly software framework Multi-Metabolic Evaluator (MultiMetEval), built upon SurreyFBA, which allows the user to compose collections of metabolic models that together can be subjected to flux balance analysis. Additionally, MultiMetEval implements functionalities for multi-objective analysis by calculating the Pareto front between two cellular objectives. Using a previously generated dataset of 38 actinobacterial genome-scale metabolic models, we show how these approaches can lead to exciting novel insights. Firstly, after incorporating several pathways for the biosynthesis of natural products into each of these models, comparative flux balance analysis predicted that species like Streptomyces that harbour the highest diversity of secondary metabolite biosynthetic gene clusters in their genomes do not necessarily have the metabolic network topology most suitable for compound overproduction. Secondly, multi-objective analysis of biomass production and natural product biosynthesis in these actinobacteria shows that the well-studied occurrence of discrete metabolic switches during the change of cellular objectives is inherent to their metabolic network architecture. Comparative and multi-objective modelling can lead to insights that could not be obtained by normal flux balance analyses. MultiMetEval provides a powerful platform that makes these analyses straightforward for biologists. Sources and binaries of MultiMetEval are freely available from https://github.com/PiotrZakrzewski/MetEv​al/downloads

    Stromal SPOCK1 supports invasive pancreatic cancer growth

    Get PDF
    This research was supported by a KWF Dutch Cancer Society Research Project Grant to MFB and HWL (UVA 2012-5607 and UVA 2013- 5932), and continuous AMC Foundation support

    A Phase II Trial of Lutikizumab, an Anti–Interleukin‐1α/β Dual Variable Domain Immunoglobulin, in Knee Osteoarthritis Patients With Synovitis

    Get PDF
    Objective: To assess the efficacy and safety of the anti–interleukin‐1α/β (anti–IL‐1α/β) dual variable domain immunoglobulin lutikizumab (ABT‐981) in patients with knee osteoarthritis (OA) and evidence of synovitis. Methods: Patients (n = 350; 347 analyzed) with Kellgren/Lawrence grade 2–3 knee OA and synovitis (determined by magnetic resonance imaging [MRI] or ultrasound) were randomized to receive placebo or lutikizumab 25, 100, or 200 mg subcutaneously every 2 weeks for 50 weeks. The coprimary end points were change from baseline in Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain score at week 16 and change from baseline in MRI‐assessed synovitis at week 26. Results: The WOMAC pain score at week 16 had improved significantly versus placebo with lutikizumab 100 mg (P = 0.050) but not with the 25 mg or 200 mg doses. Beyond week 16, the WOMAC pain score was reduced in all groups but was not significantly different between lutikizumab‐treated and placebo‐treated patients. Changes from baseline in MRI‐assessed synovitis at week 26 and other key symptom‐ and most structure‐related end points at weeks 26 and 52 were not significantly different between the lutikizumab and placebo groups. Injection site reactions, neutropenia, and discontinuations due to neutropenia were more frequent with lutikizumab versus placebo. Reductions in neutrophil and high‐sensitivity C‐reactive protein levels plateaued with lutikizumab 100 mg, with further reductions not observed with the 200 mg dose. Immunogenic response to lutikizumab did not meaningfully affect systemic lutikizumab concentrations. Conclusion: The limited improvement in the WOMAC pain score and the lack of synovitis improvement with lutikizumab, together with published results from trials of other IL‐1 inhibitors, suggest that IL‐1 inhibition is not an effective analgesic/antiinflammatory therapy in most patients with knee OA and associated synovitis

    Caspase-8 binding to cardiolipin in giant unilamellar vesicles provides a functional docking platform for bid

    Get PDF
    Caspase-8 is involved in death receptor-mediated apoptosis in type II cells, the proapoptotic programme of which is triggered by truncated Bid. Indeed, caspase-8 and Bid are the known intermediates of this signalling pathway. Cardiolipin has been shown to provide an anchor and an essential activating platform for caspase-8 at the mitochondrial membrane surface. Destabilisation of this platform alters receptor-mediated apoptosis in diseases such as Barth Syndrome, which is characterised by the presence of immature cardiolipin which does not allow caspase-8 binding. We used a simplified in vitro system that mimics contact sites and/or cardiolipin-enriched microdomains at the outer mitochondrial surface in which the platform consisting of caspase-8, Bid and cardiolipin was reconstituted in giant unilamellar vesicles. We analysed these vesicles by flow cytometry and confirm previous results that demonstrate the requirement for intact mature cardiolipin for caspase-8 activation and Bid binding and cleavage. We also used confocal microscopy to visualise the rupture of the vesicles and their revesiculation at smaller sizes due to alteration of the curvature following caspase-8 and Bid binding. Biophysical approaches, including Laurdan fluorescence and rupture/tension measurements, were used to determine the ability of these three components (cardiolipin, caspase-8 and Bid) to fulfil the minimal requirements for the formation and function of the platform at the mitochondrial membrane. Our results shed light on the active functional role of cardiolipin, bridging the gap between death receptors and mitochondria

    Evaluation of intracellular signalling pathways in response to insulin-like growth factor I in apoptotic-resistant activated human hepatic stellate cells

    Get PDF
    BACKGROUND: Human hepatic stellate cells have been shown to be resistant to apoptotic stimuli. This is likely dependent on the activation of anti-apoptotic pathways upon transition of these cells to myofibroblast-like cells. In particular, previous studies have demonstrated an increased expression of the anti-apoptotic protein Bcl-2 and a decreased expression of the pro-apoptotic protein Bax during the transition of the hepatic stellate cell phenotype from quiescent to myofibroblast-like cells. However, the role and expression of other key anti-apoptotic and survival pathways elicited by polypeptide growth factors involved in the chronic wound healing process remain to be elucidated. In particular, insulin growth factor-I promotes chemotactic and mitogenic effects in activated human hepatic stellate cells and these effects are mediated by the activation of PI 3-K. The role of insulin growth factor-I as a survival factor in human hepatic stellate cells needs to be substantiated. The aim of this study was to evaluate the involvement of other key anti-apoptotic pathways such as PI-3K/Akt/p-Bad in response to insulin growth factor-I. RESULTS: Insulin growth factor-I induced activation of Akt followed by Bad phosphorylation after 15 minutes of incubation. These effects were PI-3k dependent since selective inhibitors of this molecule, wortmannin and LY294002, inhibited both Akt and Bad phosphorylation. The effect of insulin growth factor-I on the activation of two downstream targets of Akt activation, that is, GSK3 and FHKR, both implicated in the promotion of cell survival was also investigated. Both targets became phosphorylated after 15 minutes of incubation, and these effects were also PI-3K-dependent. Despite the activation of this survival pathway insulin growth factor-I did not have a remarkable biological effect, probably because other insulin growth factor-I-independent survival pathways were already maximally activated in the process of hepatic stellate cell activation. However, after incubation of the cells with a strong apoptotic stimuli such as Fas ligand+cycloheximide, a small percentage of hepatic stellate cells underwent programmed cell death that was partially rescued by insulin growth factor-I. CONCLUSION: In addition to Bcl-2, several other anti-apoptotic pathways are responsible for human hepatic stellate cell resistance to apoptosis. These features are relevant for the progression and limited reversibility of liver fibrosis in humans

    IFN-γ Rα Is a Key Determinant of CD8+ T Cell-Mediated Tumor Elimination or Tumor Escape and Relapse in FVB Mouse

    Get PDF
    During the past decade, the dual function of the immune system in tumor inhibition and tumor progression has become appreciated. We have previously reported that neu-specific T cells can induce rejection of neu positive mouse mammary carcinoma (MMC) and also facilitate tumor relapse by inducing neu antigen loss and epithelial to mesenchymal transition (EMT). Here, we sought to determine the mechanism by which CD8+ T cells either eliminate the tumor, or maintain tumor cells in a dormant state and eventually facilitate tumor relapse. We show that tumor cells that express high levels of IFN-γ Rα are eliminated by CD8+ T cells. In contrast, tumor cells that express low levels of IFN-γ Rα do not die but remain dormant and quiescent in the presence of IFN-γ producing CD8+ T cells until they hide themselves from the adaptive immune system by losing the tumor antigen, neu. Relapsed tumor cells show CD44+CD24- phenotype with higher rates of tumorigenesis, in vivo. Acquisition of CD44+CD24- phenotype in relapsed tumors was not solely due to Darwinian selection. Our data suggest that tumor cells control the outcome of tumor immune surveillance through modulation of the expression of IFN-γ Rα

    A RAC-GEF network critical for early intestinal tumourigenesis.

    Get PDF
    RAC1 activity is critical for intestinal homeostasis, and is required for hyperproliferation driven by loss of the tumour suppressor gene Apc in the murine intestine. To avoid the impact of direct targeting upon homeostasis, we reasoned that indirect targeting of RAC1 via RAC-GEFs might be effective. Transcriptional profiling of Apc deficient intestinal tissue identified Vav3 and Tiam1 as key targets. Deletion of these indicated that while TIAM1 deficiency could suppress Apc-driven hyperproliferation, it had no impact upon tumourigenesis, while VAV3 deficiency had no effect. Intriguingly, deletion of either gene resulted in upregulation of Vav2, with subsequent targeting of all three (Vav2-/- Vav3-/- Tiam1-/-), profoundly suppressing hyperproliferation, tumourigenesis and RAC1 activity, without impacting normal homeostasis. Critically, the observed RAC-GEF dependency was negated by oncogenic KRAS mutation. Together, these data demonstrate that while targeting RAC-GEF molecules may have therapeutic impact at early stages, this benefit may be lost in late stage disease

    Oncogenic BRAF, unrestrained by TGFβ-receptor signalling, drives right-sided colonic tumorigenesis.

    Get PDF
    Right-sided (proximal) colorectal cancer (CRC) has a poor prognosis and a distinct mutational profile, characterized by oncogenic BRAF mutations and aberrations in mismatch repair and TGFβ signalling. Here, we describe a mouse model of right-sided colon cancer driven by oncogenic BRAF and loss of epithelial TGFβ-receptor signalling. The proximal colonic tumours that develop in this model exhibit a foetal-like progenitor phenotype (Ly6a/Sca1+) and, importantly, lack expression of Lgr5 and its associated intestinal stem cell signature. These features are recapitulated in human BRAF-mutant, right-sided CRCs and represent fundamental differences between left- and right-sided disease. Microbial-driven inflammation supports the initiation and progression of these tumours with foetal-like characteristics, consistent with their predilection for the microbe-rich right colon and their antibiotic sensitivity. While MAPK-pathway activating mutations drive this foetal-like signature via ERK-dependent activation of the transcriptional coactivator YAP, the same foetal-like transcriptional programs are also initiated by inflammation in a MAPK-independent manner. Importantly, in both contexts, epithelial TGFβ-receptor signalling is instrumental in suppressing the tumorigenic potential of these foetal-like progenitor cells

    The role of c-FLIP splice variants in urothelial tumours

    Get PDF
    Deregulation of apoptosis is common in cancer and is often caused by overexpression of anti-apoptotic proteins in tumour cells. One important regulator of apoptosis is the cellular FLICE-inhibitory protein (c-FLIP), which is overexpressed, for example, in melanoma and Hodgkin's lymphoma cells. Here, we addressed the question whether deregulated c-FLIP expression in urothelial carcinoma impinges on the ability of death ligands to induce apoptosis. In particular, we investigated the role of the c-FLIP splice variants c-FLIPlong (c-FLIPL) and c-FLIPshort (c-FLIPS), which can have opposing functions. We observed diminished expression of the c-FLIPL isoform in urothelial carcinoma tissues as well as in established carcinoma cell lines compared with normal urothelial tissues and cells, whereas c-FLIPS was unchanged. Overexpression and RNA interference studies in urothelial cell lines nevertheless demonstrated that c-FLIP remained a crucial factor conferring resistance towards induction of apoptosis by death ligands CD95L and TRAIL. Isoform-specific RNA interference showed c-FLIPL to be of particular importance. Thus, urothelial carcinoma cells appear to fine-tune c-FLIP expression to a level sufficient for protection against activation of apoptosis by the extrinsic pathway. Therefore, targeting c-FLIP, and especially the c-FLIPL isoform, may facilitate apoptosis-based therapies of bladder cancer in otherwise resistant tumours
    corecore