731 research outputs found

    Determination of spin polarization in InAs/GaAs self-assembled quantum dots

    Full text link
    The spin polarization of electrons trapped in InAs self-assembled quantum dot ensembles is investigated. A statistical approach for the population of the spin levels allows one to infer the spin polarization from the measure values of the addition energies. From the magneto-capacitance spectroscopy data, the authors found a fully polarized ensemble of electronic spins above 10 T when B∥[001]\mathbf{B}\parallel[001] and at 2.8 K. Finally, by including the g-tensor anisotropy the angular dependence of spin polarization with the magnetic field B\mathbf{B} orientation and strength could be determined.Comment: 3 pages, 2 figures, Accepted Appl. Phys. Let

    Rehybridization of electronic structure in compressed two-dimensional quantum dot superlattices

    Get PDF
    Two-dimensional superlattices of organically passivated 2.6-nm silver quantum dots were prepared as Langmuir monolayers and transferred to highly oriented pyrolytic graphite substrates. The structural and electronic properties of the films were probed with variable temperature scanning tunneling microscopy. Particles passivated with decanethiol (interparticle separation distance of ∼1.1±0.2 nm) exhibited Coulomb blockade and staircase. For particles passivated with hexanethiol or pentanethiol (interparticle separation distance of ∼0.5±0.2 nm), the single-electron charging was quenched, and the redistribution of the density of states revealed that strong quantum mechanical exchange, i.e., wave-function hybridization, existed among the particles in these films

    Microstrip resonator for microwaves with controllable polarization

    Full text link
    In this work the authors implemented a resonator based upon microstrip cavities that permits the generation of microwaves with arbitrary polarization. Design, simulation, and implementation of the resonators were performed using standard printed circuit boards. The electric field distribution was mapped using a scanning probe cavity perturbation technique. Electron spin resonance using a standard marker was carried out in order to verify the polarization control from linear to circular.Comment: 3 pages, 3 figures, submitted to Appl. Phys. Let

    Lande g-tensor in semiconductor nanostructures

    Get PDF
    Understanding the electronic structure of semiconductor nanostructures is not complete without a detailed description of their corresponding spin-related properties. Here we explore the response of the shell structure of InAs self-assembled quantum dots to magnetic fields oriented in several directions, allowing the mapping of the g-tensor modulus for the s and p shells. We found that the g-tensors for the s and p shells show a very different behavior. The s-state in being more localized allows the probing of the confining potential details by sweeping the magnetic field orientation from the growth direction towards the in-plane direction. As for the p-state, we found that the g-tensor modulus is closer to that of the surrounding GaAs, consistent with a larger delocalization. These results reveal further details of the confining potentials of self-assembled quantum dots that have not yet been probed, in addition to the assessment of the g-tensor, which is of fundamental importance for the implementation of spin related applications.Comment: 4 pages, 4 figure

    Polarization-selective excitation of N-V centers in diamond

    Full text link
    The nitrogen-vacancy (N-V) center in diamond is promising as an electron spin qubit due to its long-lived coherence and optical addressability. The ground state is a spin triplet with two levels (ms=±1m_s = \pm 1) degenerate at zero magnetic field. Polarization-selective microwave excitation is an attractive method to address the spin transitions independently, since this allows operation down to zero magnetic field. Using a resonator designed to produce circularly polarized microwaves, we have investigated the polarization selection rules of the N-V center. We first apply this technique to N-V ensembles in [100] and [111]-oriented samples. Next, we demonstrate an imaging technique, based on optical polarization dependence, that allows rapid identification of the orientations of many single N-V centers. Finally, we test the microwave polarization selection rules of individual N-V centers of known orientation

    Self-consistent Coulomb effects and charge distribution of quantum dot arrays

    Full text link
    This paper considers the self-consistent Coulomb interaction within arrays of self-assembled InAs quantum dots (QDs) which are embedded in a pn structure. Strong emphasis is being put on the statistical occupation of the electronic QD states which has to be solved self-consistently with the actual three-dimensional potential distribution. A model which is based on a Green's function formalism including screening effects is used to calculate the interaction of QD carriers within an array of QDs, where screening due to the inhomogeneous bulk charge distribution is taken into acount. We apply our model to simulate capacitance-voltage (CV) characteristics of a pn structure with embedded QDs. Different size distributions of QDs and ensembles of spatially perodic and randomly distributed arrays of QDs are investigated.Comment: submitted to pr

    Extended excitons and compact heliumlike biexcitons in type-II quantum dots.

    Get PDF
    We have used magneto-photoluminescence measurements to establish that InP/GaAs quantum dots have a type-II band (staggered) alignment. The average excitonic Bohr radius and the binding energy are estimated to be 15 nm and 1.5 meV respectively. When compared to bulk InP, the excitonic binding is weaker due to the repulsive (type-II) potential at the hetero-interface. The measurements are extended to over almost six orders of magnitude of laser excitation powers and to magnetic fields of up to 50 tesla. It is shown that the excitation power can be used to tune the average hole occupancy of the quantum dots, and hence the strength of the electron-hole binding. The diamagnetic shift coe±cient is observed to drastically reduce as the quantum dot ensemble makes a gradual transition from a regime where the emission is from (hydrogen-like) two-particle excitonic states to a regime where the emission from (helium-like) four-particle biexcitonic states also become significant
    • …
    corecore