6,272 research outputs found
Calibration of Asynchronous Camera Networks: CALICO
Camera network and multi-camera calibration for external parameters is a
necessary step for a variety of contexts in computer vision and robotics,
ranging from three-dimensional reconstruction to human activity tracking. This
paper describes CALICO, a method for camera network and/or multi-camera
calibration suitable for challenging contexts: the cameras may not share a
common field of view and the network may be asynchronous. The calibration
object required is one or more rigidly attached planar calibration patterns,
which are distinguishable from one another, such as aruco or charuco patterns.
We formulate the camera network and/or multi-camera calibration problem using
rigidity constraints, represented as a system of equations, and an approximate
solution is found through a two-step process. Simulated and real experiments,
including an asynchronous camera network, multicamera system, and rotating
imaging system, demonstrate the method in a variety of settings. Median
reconstruction accuracy error was less than mm for all datasets.
This method is suitable for novice users to calibrate a camera network, and the
modularity of the calibration object also allows for disassembly, shipping, and
the use of this method in a variety of large and small spaces.Comment: 11 page
Torsion-Adding and Asymptotic Winding Number for Periodic Window Sequences
In parameter space of nonlinear dynamical systems, windows of periodic states
are aligned following routes of period-adding configuring periodic window
sequences. In state space of driven nonlinear oscillators, we determine the
torsion associated with the periodic states and identify regions of uniform
torsion in the window sequences. Moreover, we find that the measured of torsion
differs by a constant between successive windows in periodic window sequences.
We call this phenomenon as torsion-adding. Finally, combining the torsion and
the period adding rules, we deduce a general rule to obtain the asymptotic
winding number in the accumulation limit of such periodic window sequences
Microstrip resonator for microwaves with controllable polarization
In this work the authors implemented a resonator based upon microstrip
cavities that permits the generation of microwaves with arbitrary polarization.
Design, simulation, and implementation of the resonators were performed using
standard printed circuit boards. The electric field distribution was mapped
using a scanning probe cavity perturbation technique. Electron spin resonance
using a standard marker was carried out in order to verify the polarization
control from linear to circular.Comment: 3 pages, 3 figures, submitted to Appl. Phys. Let
Determination of spin polarization in InAs/GaAs self-assembled quantum dots
The spin polarization of electrons trapped in InAs self-assembled quantum dot
ensembles is investigated. A statistical approach for the population of the
spin levels allows one to infer the spin polarization from the measure values
of the addition energies. From the magneto-capacitance spectroscopy data, the
authors found a fully polarized ensemble of electronic spins above 10 T when
and at 2.8 K. Finally, by including the g-tensor
anisotropy the angular dependence of spin polarization with the magnetic field
orientation and strength could be determined.Comment: 3 pages, 2 figures, Accepted Appl. Phys. Let
Generalized Miura Transformations, Two-Boson KP Hierarchies and their Reduction to KDV Hierarchies
Bracket preserving gauge equivalence is established between several two-boson
generated KP type of hierarchies. These KP hierarchies reduce under symplectic
reduction (via Dirac constraints) to KdV, mKdV and Schwarzian KdV hierarchies.
Under this reduction the gauge equivalence is taking form of the conventional
Miura maps between the above KdV type of hierarchies.Comment: 12 pgs., LaTeX, IFT-P/011/93, UICHEP-TH/93-
Resgate de germoplasma vegetal de espécies-alvo na área de influência do Aproveitamento Hidrelétrico Barra Grande (RS, SC).
bitstream/CENARGEN/29675/1/doc223.pd
Lande g-tensor in semiconductor nanostructures
Understanding the electronic structure of semiconductor nanostructures is not
complete without a detailed description of their corresponding spin-related
properties. Here we explore the response of the shell structure of InAs
self-assembled quantum dots to magnetic fields oriented in several directions,
allowing the mapping of the g-tensor modulus for the s and p shells. We found
that the g-tensors for the s and p shells show a very different behavior. The
s-state in being more localized allows the probing of the confining potential
details by sweeping the magnetic field orientation from the growth direction
towards the in-plane direction. As for the p-state, we found that the g-tensor
modulus is closer to that of the surrounding GaAs, consistent with a larger
delocalization. These results reveal further details of the confining
potentials of self-assembled quantum dots that have not yet been probed, in
addition to the assessment of the g-tensor, which is of fundamental importance
for the implementation of spin related applications.Comment: 4 pages, 4 figure
- …