326 research outputs found
Grotta Romanelli (Southern Italy, Apulia). Legacies and issues in excavating a key site for the Pleistocene of the Mediterranean
Grotta Romanelli, located on the Adriatic coast of southern Apulia (Italy), is considered a key site for the Mediterranean Pleistocene for its archaeological and palaeontological contents. The site, discovered in 1874, was re-evaluated only in 1900, when P. E. Stasi realised that it contained the first evidence of the Palaeolithic in Italy. Starting in 1914, G. A. Blanc led a pioneering excavation campaign, for the first-time using scientific methods applied to systematic palaeontological and stratigraphical studies. Blanc proposed a stratigraphic framework for the cave. Different dating methods (C-14 and U/Th) were used to temporally constrain the deposits. The extensive studies of the cave and its contents were mostly published in journals with limited distribution and access, until the end of the 1970s, when the site became forgotten. In 2015, with the permission of the authorities, a new excavation campaign began, led by a team from Sapienza University of Rome in collaboration with IGAG CNR and other research institutions. The research team had to deal with the consequences of more than 40 years of inactivity in the field and the combined effect of erosion and legal, as well as illegal, excavations. In this paper, we provide a database of all the information published during the first 70 years of excavations and highlight the outstanding problems and contradictions between the chronological and geomorphological evidence, the features of the faunal assemblages and the limestone artefacts
Phase noise of fourâwave mixing in semiconductor lasers
This is the published version. Copyright © 1992 American Institute of PhysicsA simple theoreticalanalysis shows that the linewidth of the conjugate wave produced in fourâwave mixing in semiconductor lasers is equal to the linewidth of the probe plus four times the linewidth of the pump. Experimental results in good agreement with the theory are presented. This result implies an enormous enhancement in the phase noise of the conjugate wave and sets a limitation on some practical applications of fourâwave mixing
Nonclassical correlations in damped quantum solitons
Using cumulant expansion in Gaussian approximation, the internal quantum
statistics of damped soliton-like pulses in Kerr media are studied numerically,
considering both narrow and finite bandwidth spectral pulse components. It is
shown that the sub-Poissonian statistics can be enhanced, under certain
circumstances, by absorption, which damps out some destructive interferences.
Further, it is shown that both the photon-number correlation and the
correlation of the photon-number variance between different pulse components
can be highly nonclassical even for an absorbing fiber. Optimum frequency
windows are determined in order to realize strong nonclassical behavior, which
offers novel possibilities of using solitons in optical fibers as a source of
nonclassically correlated light beams.Comment: 15 pages, 11 PS figures (color
Theory of quantum fluctuations of optical dissipative structures and its application to the squeezing properties of bright cavity solitons
We present a method for the study of quantum fluctuations of dissipative
structures forming in nonlinear optical cavities, which we illustrate in the
case of a degenerate, type I optical parametric oscillator. The method consists
in (i) taking into account explicitly, through a collective variable
description, the drift of the dissipative structure caused by the quantum
noise, and (ii) expanding the remaining -internal- fluctuations in the
biorthonormal basis associated to the linear operator governing the evolution
of fluctuations in the linearized Langevin equations. We obtain general
expressions for the squeezing and intensity fluctuations spectra. Then we
theoretically study the squeezing properties of a special dissipative
structure, namely, the bright cavity soliton. After reviewing our previous
result that in the linear approximation there is a perfectly squeezed mode
irrespectively of the values of the system parameters, we consider squeezing at
the bifurcation points, and the squeezing detection with a plane--wave local
oscillator field, taking also into account the effect of the detector size on
the level of detectable squeezing.Comment: 10 figure
The Italian research project ROAD-NGN âOptical frequency/wavelength division multiple access techniques for next generation networks'
The paper describes the activities of the Italian national research project ROAD-NGN âOptical frequency/wavelength division multiple access techniques for next generation networksâ; the project aims to investigate and experiment new technological solutions to facilitate the migration of access systems from copper to optical fibre, and to help the integration with broadband wireless architectures, with particular interest for the backhauling of the fourth generation (4G) Long Term Evolution (LTE) networks. The approaches, based on the orthogonal frequency division multiplexing (OFDM) and wavelength division multiplexing (WDM) techniques, can enable the unbundling of the local loop (ULL) and are upgradable toward very ultra wideband systems
Stratigraphic reassessment of Grotta Romanelli sheds light on Middle-Late Pleistocene palaeoenvironments and human settling in the Mediterranean
During the last century, Grotta Romanelli (Southern Italy) has been a reference site for the European Late Pleistocene stratigraphy, due to its geomorphological setting and archaeological and palaeontological content. The beginning of the sedimentation inside the cave was attributed to the Last Interglacial (MISs 5e) and the oldest unearthed evidence of human occupation, including remains of hearths, was therefore referred to the Middle Palaeolithic. Recent surveys and excavations produced new U/Th dates, palaeoenvironmental interpretation and a litho-, morpho- and chrono-stratigraphical reassessment, placing the oldest human frequentation of the cave between MIS 9 and MIS 7, therefore embracing Glacial and Interglacial cycles. These new data provide evidence that the sea reached the cave during the Middle Pleistocene and human occupation occurred long before MISs 5e and persisted beyond the Pleistocene- Holocene boundary
Soliton back-action evading measurement using spectral filtering
We report on a back-action evading (BAE) measurement of the photon number of
fiber optical solitons operating in the quantum regime. We employ a novel
detection scheme based on spectral filtering of colliding optical solitons. The
measurements of the BAE criteria demonstrate significant quantum state
preparation and transfer of the input signal to the signal and probe outputs
exiting the apparatus, displaying the quantum-nondemolition (QND) behavior of
the experiment.Comment: 5 pages, 5 figure
Dependence of transient dynamics in a class-C laser upon variation of inversion with time
The transient statistics of a gain-switched coherently pumped class-C laser displays a linear correlation between the first passage time and subsequent peak intensity. Measurements are reported showing a positive or negative sign of this linear correlation, controlled through the switching time and the laser detuning. Further measurements of the small-signal laser gain combined with calculations involving a three-level laser model indicate that this sign fundamentally depends upon the way the laser inversion varies during the gain switching, despite the added dynamics of the laser polarization in the class-C laser. [S1050-2947(97)07112-6]
Using machine learning to improve the diagnostic accuracy of the modified Duke/ESC 2015 criteria in patients with suspected prosthetic valve endocarditis - a proof of concept study
Introduction Prosthetic valve endocarditis (PVE) is a serious complication of prosthetic valve implantation, with an estimated yearly incidence of at least 0.4-1.0%. The Duke criteria and subsequent modifications have been developed as a diagnostic framework for infective endocarditis (IE) in clinical studies. However, their sensitivity and specificity are limited, especially for PVE. Furthermore, their most recent versions (ESC2015 and ESC2023) include advanced imaging modalities, e.g., cardiac CTA and [18F]FDG PET/CT as major criteria. However, despite these significant changes, the weighing system using major and minor criteria has remained unchanged. This may have introduced bias to the diagnostic set of criteria. Here, we aimed to evaluate and improve the predictive value of the modified Duke/ESC 2015 (MDE2015) criteria by using machine learning algorithms.Methods In this proof-of-concept study, we used data of a well-defined retrospective multicentre cohort of 160 patients evaluated for suspected PVE. Four machine learning algorithms were compared to the prediction of the diagnosis according to the MDE2015 criteria: Lasso logistic regression, decision tree with gradient boosting (XGBoost), decision tree without gradient boosting, and a model combining predictions of these (ensemble learning). All models used the same features that also constitute the MDE2015 criteria. The final diagnosis of PVE, based on endocarditis team consensus using all available clinical information, including surgical findings whenever performed, and with at least 1 year follow up, was used as the composite gold standard.Results The diagnostic performance of the MDE2015 criteria varied depending on how the category of 'possible' PVE cases were handled. Considering these cases as positive for PVE, sensitivity and specificity were 0.96 and 0.60, respectively. Whereas treating these cases as negative, sensitivity and specificity were 0.74 and 0.98, respectively. Combining the approaches of considering possible endocarditis as positive and as negative for ROC-analysis resulted in an excellent AUC of 0.917. For the machine learning models, the sensitivity and specificity were as follows: logistic regression, 0.92 and 0.85; XGBoost, 0.90 and 0.85; decision trees, 0.88 and 0.86; and ensemble learning, 0.91 and 0.85, respectively. The resulting AUCs were, in the same order: 0.938, 0.937, 0.930, and 0.941, respectively.Discussion In this proof-of-concept study, machine learning algorithms achieved improved diagnostic performance compared to the major/minor weighing system as used in the MDE2015 criteria. Moreover, these models provide quantifiable certainty levels of the diagnosis, potentially enhancing interpretability for clinicians. Additionally, they allow for easy incorporation of new and/or refined criteria, such as the individual weight of advanced imaging modalities such as CTA or [18F]FDG PET/CT. These promising preliminary findings warrant further studies for validation, ideally in a prospective cohort encompassing the full spectrum of patients with suspected IE
Approaches to the Rational Design of Molecularly Imprinted Polymers Developed for the Selective Extraction or Detection of Antibiotics in Environmental and Food Samples
The World Health Organisation (WHO) reported antimicrobial resistance (AMR) as a global threat comparable to terrorism and climate change. The use of antibiotics in veterinary or clinical practice exerts a selective pressure, which accelerates the emergence of antimicrobial resistance. Therefore, there is a clear need to detect antibiotic residues in complex matrices, such as water, food, and environmental samples, in a fast, selective, cost-effective, and quantitative manner. Once problematic areas are identified, can extraction of the antibiotics then be carried out to reduce AMR development. Molecularly imprinted polymer (MIPs) are synthetic recognition elements produced through the biomarker of interest being used as a template in order to manufacture tailor-made ligand selective polymeric recognition sites. They are emerging steadily as a viable alternative to antibiotics, especially given their low-cost, superior thermal and chemical stability that facilitates on-site detection, simplified manufacturing process, and avoiding the use of animals in the production process. In this paper, the authors critically review literature from primarily 2010â2020 on rational design approaches used to develop MIPs for sensing and extraction of antibiotics, providing an outlook on crucial issues that need to be tackled to bring MIPs for antibiotic sensing to the market
- âŠ