544 research outputs found

    Investigation of dissimilar metal welds by energy-resolved neutron imaging

    Get PDF
    A nondestructive study of the internal structure and compositional gradient of dissimilar metal-alloy welds through energy-resolved neutron imaging is described in this paper. The ability of neutrons to penetrate thick metal objects (up to several cm) provides a unique possibility to examine samples which are opaque to other conventional techniques. The presence of Bragg edges in the measured neutron transmission spectra can be used to characterize the internal residual strain within the samples and some microstructural features, e.g. texture within the grains, while neutron resonance absorption provides the possibility to map the degree of uniformity in mixing of the participating alloys and intermetallic formation within the welds. In addition, voids and other defects can be revealed by the variation of neutron attenuation across the samples. This paper demonstrates the potential of neutron energy-resolved imaging to measure all these characteristics simultaneously in a single experiment with sub-mm spatial resolution. Two dissimilar alloy welds are used in this study: Al autogenously laser welded to steel, and Ti gas metal arc welded (GMAW) to stainless steel using Cu as a filler alloy. The cold metal transfer variant of the GMAW process was used in joining the Ti to the stainless steel in order to minimize the heat input. The distributions of the lattice parameter and texture variation in these welds as well as the presence of voids and defects in the melt region are mapped across the welds. The depth of the thermal front in the Al–steel weld is clearly resolved and could be used to optimize the welding process. A highly textured structure is revealed in the Ti to stainless steel joint where copper was used as a filler wire. The limited diffusion of Ti into the weld region is also verified by the resonance absorption

    A Wide Database for a Multicenter Study on Pneumocystis jirovecii Pneumonia in Intensive Care Units

    Get PDF
    Pneumocystis jirovecii pneumonia (PJP) is an opportunistic fungal infection that may affect patients with immunosuppression. In order to improve the diagnosis accuracy for PJP, facilitating the collection of data across Europe to reliably assess the performance of diagnostic tests for PJP is essential to improve the care of critically ill patients developing this severe condition. Such large data can be collected thanks to the contribution of several European hospitals in the compilation of a dedicated electronic Case Report Form (eCRF). The main focus of this work is to create an interface with high ergonomics both in the compilation and in the subsequent validation of the records

    An integrated strategy for the prevention of SARS-CoV-2 infection in healthcare workers: a prospective observational study

    Get PDF
    BACKGROUND: Since the beginning of SARS-CoV-2 outbreak, a large number of infections have been reported among healthcare workers (HCWs). The aim of this study was to investigate the occurrence of SARS-CoV-2 infection among HCWs involved in the first management of infected patients and to describe the measures adopted to prevent the transmission in the hospital. METHODS: This prospective observational study was conducted between February 21 and April 16, 2020, in the Padua University Hospital (north-east Italy). The infection control policy adopted consisted of the following: the creation of the "Advanced Triage" area for the evaluation of SARS-CoV-2 cases, and the implementation of an integrated infection control surveillance system directed to all the healthcare personnel involved in the Advance Triage area. HCWs were regularly tested with nasopharyngeal swabs for SARS-CoV-2; body temperature and suggestive symptoms were evaluated at each duty. Demographic and clinical data of both patients and HCWs were collected and analyzed; HCWs' personal protective equipment (PPE) consumption was also recorded. The efficiency of the control strategy among HCWs was evaluated identifying symptomatic infection (primary endpoint) and asymptomatic infection (secondary endpoint) with confirmed detection of SARS-CoV-2. RESULTS: 7595 patients were evaluated in the Advanced Triage area: 5.2% resulted positive and 72.4% was symptomatic. The HCW team was composed of 60 members. A total of 361 nasopharyngeal swabs were performed on HCWs. All the swabs resulted negative and none of the HCWs reached the primary or the secondary endpoint. CONCLUSIONS: An integrated hospital infection control strategy, consisting of dedicated areas for infected patients, strict measures for PPE use and mass surveillance, is successful to prevent infection among HCWs

    Combining olfactory test and motion analysis sensors in Parkinson's disease preclinical diagnosis: A pilot study

    Get PDF
    Objectives: Preclinical diagnosis of Parkinson's disease (PD) is nowadays a topic of interest as the neuropathological process could begin years before the appearance of motor symptoms. Several symptoms, among them hyposmia, could precede motor features in PD. In the preclinical phase of PD, a subclinical reduction in motor skills is highly likely. In this pilot study, we investigate a step-by-step method to achieve preclinical PD diagnosis. Material and methods: We used the IOIT (Italian Olfactory Identification Test) to screen a population of healthy subjects. We identified 20 subjects with idiopathic hyposmia. Hyposmic subjects underwent an evaluation of motor skills, at baseline and after 1 year, using motion analysis sensors previously created by us. Results: One subject showed significant worsening in motor measurements. In this subject, we further conducted a dopaminergic challenge test monitored with the same sensors and, finally, he underwent [123I]-FP/CIT (DaTscan) SPECT brain imaging. The results show that he is probably affected by preclinical PD. Conclusions: Our pilot study suggests that the combined use of an olfactory test and motor sensors for motion analysis could be useful for a screening of healthy subjects to identify those at a high risk of developing PD

    Crilin: A CRystal calorImeter with Longitudinal InformatioN for a future Muon Collider

    Full text link
    The measurement of physics processes at new energy frontier experiments requires excellent spatial, time, and energy resolutions to resolve the structure of collimated high-energy jets. In a future Muon Collider, the beam-induced backgrounds (BIB) represent the main challenge in the design of the detectors and of the event reconstruction algorithms. The technology and the design of the calorimeters should be chosen to reduce the effect of the BIB, while keeping good physics performance. Several requirements can be inferred: i) high granularity to reduce the overlap of BIB particles in the same calorimeter cell; ii) excellent timing (of the order of 100 ps) to reduce the out-of-time component of the BIB; iii) longitudinal segmentation to distinguish the signal showers from the fake showers produced by the BIB; iv) good energy resolution (less than 10%/sqrt(E)) to obtain good physics performance, as has been already demonstrated for conceptual particle flow calorimeters. Our proposal consists of a semi-homogeneous electromagnetic calorimeter based on Lead Fluoride Crystals (PbF2) readout by surface-mount UV-extended Silicon Photomultipliers (SiPMs): the Crilin calorimeter. In this paper, the performances of the Crilin calorimeter in the Muon Collider framework for hadron jets reconstruction have been analyzed. We report the single components characterizations together with the development of a small-scale prototype, consisting of 2 layers of 3x3 crystals each

    Beam test, simulation, and performance evaluation of PbF2_2 and PWO-UF crystals with SiPM readout for a semi-homogeneous calorimeter prototype with longitudinal segmentation

    Full text link
    Crilin (Crystal Calorimeter with Longitudinal Information) is a semi-homogeneous, longitudinally segmented electromagnetic calorimeter based on high-ZZ, ultra-fast crystals with UV-extended SiPM readout. The Crilin design has been proposed as a candidate solution for both a future Muon Collider barrel ECAL and for the Small Angle Calorimeter of the HIKE experiment. As a part of the Crilin development program, we have carried out beam tests of small (10×10×4010\times10\times40~mm3^3) lead fluoride (PbF2_2) and ultra-fast lead tungstate (PbWO4_4, PWO) crystals with 120~GeV electrons at the CERN SPS to study the light yield, timing response, and systematics of light collection with a proposed readout scheme. For a single crystal of PbF2_2, corresponding to a single Crilin cell, a time resolution of better than 25~ps is obtained for >>3 GeV of deposited energy. For a single cell of \pwo, a time resolution of better than 45~ps is obtained for the same range of deposited energy. This timing performance fully satisfies the design requirements for the Muon Collider and HIKE experiments. Further optimizations of the readout scheme and crystal surface preparation are expected to bring further improvements

    Sutureless Perceval Aortic Valve Versus Conventional Stented Bioprostheses: Meta‐Analysis of Postoperative and Midterm Results in Isolated Aortic Valve Replacement

    Get PDF
    Background Aortic stenosis is the most common valvular disease and has a dismal prognosis without surgical treatment. The aim of this meta-analysis was to quantitatively assess the comparative effectiveness of the Perceval (LivaNova) valve versus conventional aortic bioprostheses. Methods and ResultsA total of 6 comparative studies were identified, including 639 and 760 patients who underwent, respectively, aortic valve replacement with the Perceval sutureless valve (P group) and with a conventional bioprosthesis (C group). Aortic cross-clamping and cardiopulmonary bypass duration were significantly lower in the P group. No difference in postoperative mortality was shown for the P and C groups (2.8% versus 2.7%, respectively; odds ratio [OR]: 0.99 [95% confidence interval (CI), 0.52-1.88]; P=0.98). Incidence of postoperative renal failure was lower in the P group compared with the C group (2.7% versus 5.5%; OR: 0.45 [95% CI, 0.25-0.80]; P=0.007). Incidence of stroke (2.3% versus 1.7%; OR: 1.34 [95% CI, 0.56-3.21]; P=0.51) and paravalvular leak (3.1% versus 1.6%; OR: 2.52 [95% CI, 0.60-1.06]; P=0.21) was similar, whereas P group patients received fewer blood transfusions than C group patients (1.161.2 versus 2.13 +/- 2.2; mean difference: 0.99 [95% CI, -1.22 to -0.75]; P=0.001). The incidence of pacemaker implantation was higher in the P than the C group (7.9% versus 3.1%; OR: 2.45 [95% CI, 1.44-4.17]; P=0.001), whereas hemodynamic Perceval performance was better (transvalvular gradient 23.42 +/- 1.73 versus 22.8 +/- 1.86; mean difference: 0.90 [95% CI, 0.62-1.18]; P=0.001), even during follow-up (10.98 +/- 5.7 versus 13.06 +/- 6.2; mean difference: -2.08 [95% CI, -3.96 to -0.21]; P=0.030). We found no difference in 1-year mortality

    Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial.

    Get PDF
    Tumor-treating fields (TTFields) is an antimitotic treatment modality that interferes with glioblastoma cell division and organelle assembly by delivering low-intensity alternating electric fields to the tumor. To investigate whether TTFields improves progression-free and overall survival of patients with glioblastoma, a fatal disease that commonly recurs at the initial tumor site or in the central nervous system. In this randomized, open-label trial, 695 patients with glioblastoma whose tumor was resected or biopsied and had completed concomitant radiochemotherapy (median time from diagnosis to randomization, 3.8 months) were enrolled at 83 centers (July 2009-2014) and followed up through December 2016. A preliminary report from this trial was published in 2015; this report describes the final analysis. Patients were randomized 2:1 to TTFields plus maintenance temozolomide chemotherapy (n = 466) or temozolomide alone (n = 229). The TTFields, consisting of low-intensity, 200 kHz frequency, alternating electric fields, was delivered (≄ 18 hours/d) via 4 transducer arrays on the shaved scalp and connected to a portable device. Temozolomide was administered to both groups (150-200 mg/m2) for 5 days per 28-day cycle (6-12 cycles). Progression-free survival (tested at α = .046). The secondary end point was overall survival (tested hierarchically at α = .048). Analyses were performed for the intent-to-treat population. Adverse events were compared by group. Of the 695 randomized patients (median age, 56 years; IQR, 48-63; 473 men [68%]), 637 (92%) completed the trial. Median progression-free survival from randomization was 6.7 months in the TTFields-temozolomide group and 4.0 months in the temozolomide-alone group (HR, 0.63; 95% CI, 0.52-0.76; P < .001). Median overall survival was 20.9 months in the TTFields-temozolomide group vs 16.0 months in the temozolomide-alone group (HR, 0.63; 95% CI, 0.53-0.76; P < .001). Systemic adverse event frequency was 48% in the TTFields-temozolomide group and 44% in the temozolomide-alone group. Mild to moderate skin toxicity underneath the transducer arrays occurred in 52% of patients who received TTFields-temozolomide vs no patients who received temozolomide alone. In the final analysis of this randomized clinical trial of patients with glioblastoma who had received standard radiochemotherapy, the addition of TTFields to maintenance temozolomide chemotherapy vs maintenance temozolomide alone, resulted in statistically significant improvement in progression-free survival and overall survival. These results are consistent with the previous interim analysis. clinicaltrials.gov Identifier: NCT00916409
    • 

    corecore