475 research outputs found

    Morphological Thermodynamics of Fluids: Shape Dependence of Free Energies

    Full text link
    We examine the dependence of a thermodynamic potential of a fluid on the geometry of its container. If motion invariance, continuity, and additivity of the potential are fulfilled, only four morphometric measures are needed to describe fully the influence of an arbitrarily shaped container on the fluid. These three constraints can be understood as a more precise definition for the conventional term "extensive" and have as a consequence that the surface tension and other thermodynamic quantities contain, beside a constant term, only contributions linear in the mean and Gaussian curvature of the container and not an infinite number of curvatures as generally assumed before. We verify this numerically in the entropic system of hard spheres bounded by a curved wall.Comment: 4 pages, 3 figures, accepted for publication in PR

    Density functional theory for hard-sphere mixtures: the White-Bear version Mark II

    Full text link
    In the spirit of the White-Bear version of fundamental measure theory we derive a new density functional for hard-sphere mixtures which is based on a recent mixture extension of the Carnahan-Starling equation of state. In addition to the capability to predict inhomogeneous density distributions very accurately, like the original White-Bear version, the new functional improves upon consistency with an exact scaled-particle theory relation in the case of the pure fluid. We examine consistency in detail within the context of morphological thermodynamics. Interestingly, for the pure fluid the degree of consistency of the new version is not only higher than for the original White-Bear version but also higher than for Rosenfeld's original fundamental measure theory.Comment: 16 pages, 3 figures; minor changes; J. Phys.: Condens. Matter, accepte

    Second order analysis of geometric functionals of Boolean models

    Full text link
    This paper presents asymptotic covariance formulae and central limit theorems for geometric functionals, including volume, surface area, and all Minkowski functionals and translation invariant Minkowski tensors as prominent examples, of stationary Boolean models. Special focus is put on the anisotropic case. In the (anisotropic) example of aligned rectangles, we provide explicit analytic formulae and compare them with simulation results. We discuss which information about the grain distribution second moments add to the mean values.Comment: Chapter of the forthcoming book "Tensor Valuations and their Applications in Stochastic Geometry and Imaging" in Lecture Notes in Mathematics edited by Markus Kiderlen and Eva B. Vedel Jensen. (The second version mainly resolves minor LaTeX problems.

    Radial Distribution Function for Semiflexible Polymers Confined in Microchannels

    Full text link
    An analytic expression is derived for the distribution G(R⃗)G(\vec{R}) of the end-to-end distance R⃗\vec{R} of semiflexible polymers in external potentials to elucidate the effect of confinement on the mechanical and statistical properties of biomolecules. For parabolic confinement the result is exact whereas for realistic potentials a self-consistent ansatz is developed, so that G(R⃗)G(\vec{R}) is given explicitly even for hard wall confinement. The theoretical result is in excellent quantitative agreement with fluorescence microscopy data for actin filaments confined in rectangularly shaped microchannels. This allows an unambiguous determination of persistence length LPL_P and the dependence of statistical properties such as Odijk's deflection length λ\lambda on the channel width DD. It is shown that neglecting the effect of confinement leads to a significant overestimation of bending rigidities for filaments

    Appearance of the Single Gyroid Network Phase in Nuclear Pasta Matter

    Get PDF
    Nuclear matter under the conditions of a supernova explosion unfolds into a rich variety of spatially structured phases, called nuclear pasta. We investigate the role of periodic network-like structures with negatively curved interfaces in nuclear pasta structures, by static and dynamic Hartree-Fock simulations in periodic lattices. As the most prominent result, we identify for the first time the {\it single gyroid} network structure of cubic chiral I4123I4_123 symmetry, a well known configuration in nanostructured soft-matter systems, both as a dynamical state and as a cooled static solution. Single gyroid structures form spontaneously in the course of the dynamical simulations. Most of them are isomeric states. The very small energy differences to the ground state indicate its relevance for structures in nuclear pasta.Comment: 7 pages, 4 figure

    Deformation of grain boundaries in polar ice

    Full text link
    The ice microstructure (grain boundaries) is a key feature used to study ice evolution and to investigate past climatic changes. We studied a deep ice core, in Dome Concordia, Antarctica, which records past mechanical deformations. We measured a "texture tensor" which characterizes the pattern geometry and reveals local heterogeneities of deformation along the core. These results question key assumptions of the current models used for dating

    Minkowski Tensors of Anisotropic Spatial Structure

    Get PDF
    This article describes the theoretical foundation of and explicit algorithms for a novel approach to morphology and anisotropy analysis of complex spatial structure using tensor-valued Minkowski functionals, the so-called Minkowski tensors. Minkowski tensors are generalisations of the well-known scalar Minkowski functionals and are explicitly sensitive to anisotropic aspects of morphology, relevant for example for elastic moduli or permeability of microstructured materials. Here we derive explicit linear-time algorithms to compute these tensorial measures for three-dimensional shapes. These apply to representations of any object that can be represented by a triangulation of its bounding surface; their application is illustrated for the polyhedral Voronoi cellular complexes of jammed sphere configurations, and for triangulations of a biopolymer fibre network obtained by confocal microscopy. The article further bridges the substantial notational and conceptual gap between the different but equivalent approaches to scalar or tensorial Minkowski functionals in mathematics and in physics, hence making the mathematical measure theoretic method more readily accessible for future application in the physical sciences

    Imbibition in mesoporous silica: rheological concepts and experiments on water and a liquid crystal

    Full text link
    We present, along with some fundamental concepts regarding imbibition of liquids in porous hosts, an experimental, gravimetric study on the capillarity-driven invasion dynamics of water and of the rod-like liquid crystal octyloxycyanobiphenyl (8OCB) in networks of pores a few nanometers across in monolithic silica glass (Vycor). We observe, in agreement with theoretical predictions, square root of time invasion dynamics and a sticky velocity boundary condition for both liquids investigated. Temperature-dependent spontaneous imbibition experiments on 8OCB reveal the existence of a paranematic phase due to the molecular alignment induced by the pore walls even at temperatures well beyond the clearing point. The ever present velocity gradient in the pores is likely to further enhance this ordering phenomenon and prevent any layering in molecular stacks, eventually resulting in a suppression of the smectic phase in favor of the nematic phase.Comment: 18 pages, 8 figure

    Rejection-free Geometric Cluster Algorithm for Complex Fluids

    Full text link
    We present a novel, generally applicable Monte Carlo algorithm for the simulation of fluid systems. Geometric transformations are used to identify clusters of particles in such a manner that every cluster move is accepted, irrespective of the nature of the pair interactions. The rejection-free and non-local nature of the algorithm make it particularly suitable for the efficient simulation of complex fluids with components of widely varying size, such as colloidal mixtures. Compared to conventional simulation algorithms, typical efficiency improvements amount to several orders of magnitude

    Shape Statistics of Sloan Digital Survey superclusters

    Full text link
    We study the supercluster shape properties of the recently compiled SDSS cluster catalog using an approach based on differential geometry. We detect superclusters by applying the percolation algorithm to observed cluster populations, extended out to zmax≤0.23z_{\rm max}\leq 0.23 in order to avoid selection biases. We utilize a set of shapefinders in order to study the morphological features of superclusters with ≥8\geq 8 cluster members and find that filamentary morphology is the dominant supercluster shape feature, in agreement with previous studies.Comment: 6 pages, 6 figures, accepted for publication in the MNRAS, (minor changes
    • …
    corecore