677 research outputs found

    Janus Kinase 1 Is Required for Transcriptional Reprograming of Murine Astrocytes in Response to Endoplasmic Reticulum Stress

    Get PDF
    Neurodegenerative diseases are associated with the accumulation of misfolded proteins in the endoplasmic reticulum (ER), leading to ER stress. To adapt, cells initiate the unfolded protein response (UPR). However, severe or unresolved UPR activation leads to cell death and inflammation. The UPR is initiated, in part, by the transER membrane kinase PKR-like ER kinase (PERK). Recent evidence indicates ER stress and inflammation are linked, and we have shown that this involves PERKdependent signaling via Janus Kinase (JAK) 1. This signaling provokes the production of soluble inflammatory mediators such as interleukin-6 (IL-6) and chemokine C-C motif ligand 2 (CCL2). We, therefore, hypothesized that JAK1 may control widespread transcriptional changes in response to ER stress. Here, using RNA sequencing of primary murine astrocytes, we demonstrate that JAK1 regulates approximately 10% of ER stress-induced gene expression and is required for a subset of PERK-dependent genes. Additionally, ER stress synergizes with tumor necrosis factor-α (TNF-α) to drive inflammatory gene expression in a JAK1-dependent fashion. We identified that JAK1 contributes to activating transcription factor (ATF) 4-dependent gene expression, including expression of the genes growth arrest and DNA damage (GADD) 45α and tribbles (TRIB) 3 that have not previously been associated with JAK signaling. While these genes are JAK1 dependent in response to ER stress, expression of GADD45α and TRIB3 are not induced by the JAK1-activating cytokine, oncostatin M (OSM). Transcriptomic analysis revealed that JAK1 drives distinct transcriptional programs in response to OSM stimulation versus ER stress. Interestingly, JAK1-dependent genes induced by ER stress in an ATF4-dependent mechanism were unaffected by small molecule inhibition of JAK1, suggesting that, in response to UPR activation, JAK1 initiates gene expression using non-canonical mechanisms. Overall, we have identified that JAK1 is a major regulator of ER stress-induced gene expression

    Glucagon and Insulin Cooperatively Stimulate Fibroblast Growth Factor 21 Gene Transcription by Increasing the Expression of Activating Transcription Factor 4

    Get PDF
    Previous studies have shown that glucagon cooperatively interacts with insulin to stimulate hepatic FGF21 gene expression. Here we investigated the mechanism by which glucagon and insulin increased FGF21 gene transcription in primary hepatocyte cultures. Transfection analyses demonstrated that glucagon plus insulin induction of FGF21 transcription was conferred by two activating transcription factor 4 (ATF4) binding sites in the FGF21 gene. Glucagon plus insulin stimulated a 5-fold increase in ATF4 protein abundance, and knockdown of ATF4 expression suppressed the ability of glucagon plus insulin to increase FGF21 expression. In hepatocytes incubated in the presence of insulin, treatment with a PKA-selective agonist mimicked the ability of glucagon to stimulate ATF4 and FGF21 expression. Inhibition of PKA, PI3K, Akt, and mammalian target of rapamycin complex 1 (mTORC1) suppressed the ability of glucagon plus insulin to stimulate ATF4 and FGF21 expression. Additional analyses demonstrated that chenodeoxycholic acid (CDCA) induced a 6-fold increase in ATF4 expression and that knockdown of ATF4 expression suppressed the ability of CDCA to increase FGF21 gene expression. CDCA increased the phosphorylation of eIF2α, and inhibition of eIF2α signaling activity suppressed CDCA regulation of ATF4 and FGF21 expression. These results demonstrate that glucagon plus insulin increases FGF21 transcription by stimulating ATF4 expression and that activation of cAMP/PKA and PI3K/Akt/mTORC1 mediates the effect of glucagon plus insulin on ATF4 expression. These results also demonstrate that CDCA regulation of FGF21 transcription is mediated at least partially by an eIF2α-dependent increase in ATF4 expression

    Endoplasmic Reticulum Stress Differentially Modulates the IL-6 Family of Cytokines in Murine Astrocytes and Macrophages

    Get PDF
    In many diseases, misfolded proteins accumulate within the endoplasmic reticulum (ER), leading to ER stress. In response, the cell initiates the unfolded protein response (UPR) to reestablish homeostasis. Additionally, in response to ER stress, various cell types mount an inflammatory response involving interleukin (IL)-6. While IL-6 has been widely studied, the impact of ER stress on other members of the IL-6 cytokine family, including oncostatin (OSM), IL-11, ciliary neurotrophic factor (CNTF), and leukemia inhibitor factor (LIF) remains to be elucidated. Here, we have examined the expression of the IL-6 family cytokines in response to pharmacologically-induced ER stress in astrocytes and macrophages, which express IL-6 in response to ER stress through different mechanisms. Our findings indicate that, in astrocytes, ER stress regulates mRNA expression of the IL-6 family of cytokines that is, in part, mediated by PKR-like ER kinase (PERK) and Janus kinase (JAK) 1. Additionally, in astrocytes, CNTF expression was suppressed through a PERK-dependent mechanism. Macrophages display a different profile of expression of the IL-6 family that is largely independent of PERK. However, IL-6 expression in macrophages was dependent on JAK signaling. Overall, this study demonstrates the cell-specific and differential mechanisms controlling expression of the IL-6 family of cytokines in response to ER stress

    Endoplasmic reticulum stress and inflammation in the central nervous system

    Get PDF
    Persistent endoplasmic reticulum (ER) stress is thought to drive the pathology of many chronic disorders due to its potential to elicit aberrant inflammatory signaling and facilitate cell death. In neurodegenerative diseases, the accumulation of misfolded proteins and concomitant induction of ER stress in neurons contributes to neuronal dysfunction. In addition, ER stress responses induced in the surrounding neuroglia may promote disease progression by coordinating damaging inflammatory responses, which help fuel a neurotoxic milieu. Nevertheless, there still remains a gap in knowledge regarding the cell-specific mechanisms by which ER stress mediates neuroinflammation. In this review, we will discuss recently uncovered inflammatory pathways linked to the ER stress response. Moreover, we will summarize the present literature delineating how ER stress is generated in Alzheimer?s disease, Parkinson?s disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis, and highlight how ER stress and neuroinflammation intersect mechanistically within the central nervous system. The mechanisms by which stress-induced inflammation contributes to the pathogenesis and progression of neurodegenerative diseases remain poorly understood. Further examination of this interplay could present unappreciated insights into the development of neurodegenerative diseases, and reveal new therapeutic targets

    Metabolic and Transcriptional Modules Independently Diversify Plasma Cell Lifespan and Function

    Get PDF
    Plasma cell survival and the consequent duration of immunity vary widely with infection or vaccination. Using fluorescent glucose analog uptake, we defined multiple developmentally independent mouse plasma cell populations with varying life- spans. Long-lived plasma cells imported more fluo- rescent glucose analog, expressed higher surface levels of the amino acid transporter CD98, and had more autophagosome mass than did short-lived cells. Low amino acid concentrations triggered re- ductions in both antibody secretion and mitochon- drial respiration, especially by short-lived plasma cells. To explain these observations, we found that glutamine was used for both mitochondrial respira- tion and anaplerotic reactions, yielding glutamate and aspartate for antibody synthesis. Endoplasmic reticulum (ER) stress responses, which link meta- bolism to transcriptional outcomes, were similar between long- and short-lived subsets. Accordingly, population and single-cell transcriptional compari- sons across mouse and human plasma cell subsets revealed few consistent and conserved dif- ferences. Thus, plasma cell antibody secretion and lifespan are primarily defined by non-transcriptional metabolic traits

    Routine activities and proactive police activity: a macro-scale analysis of police searches in London and New York City

    Get PDF
    This paper explored how city-level changes in routine activities were associated with changes in frequencies of police searches using six years of police records from the London Metropolitan Police Service and the New York City Police Department. Routine activities were operationalised through selecting events that potentially impacted on (a) the street population, (b) the frequency of crime or (c) the level of police activity. OLS regression results indicated that routine activity variables (e.g. day of the week, periods of high demand for police service) can explain a large proportion of the variance in search frequency throughout the year. A complex set of results emerged, revealing cross-national dissimilarities and the differential impact of certain activities (e.g. public holidays). Importantly, temporal frequencies in searches are not reducible to associations between searches and recorded street crime, nor changes in on-street population. Based on the routine activity approach, a theoretical police-action model is proposed
    • …
    corecore