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SUMMARY

Plasma cell survival and the consequent duration
of immunity vary widely with infection or vaccination.
Using fluorescent glucose analog uptake, we
defined multiple developmentally independent
mouse plasma cell populations with varying life-
spans. Long-lived plasma cells imported more fluo-
rescent glucose analog, expressed higher surface
levels of the amino acid transporter CD98, and had
more autophagosome mass than did short-lived
cells. Low amino acid concentrations triggered re-
ductions in both antibody secretion and mitochon-
drial respiration, especially by short-lived plasma
cells. To explain these observations, we found that
glutamine was used for both mitochondrial respira-
tion and anaplerotic reactions, yielding glutamate
and aspartate for antibody synthesis. Endoplasmic
reticulum (ER) stress responses, which link meta-
bolism to transcriptional outcomes, were similar
between long- and short-lived subsets. Accordingly,
population and single-cell transcriptional compari-
sons across mouse and human plasma cell
subsets revealed few consistent and conserved dif-
ferences. Thus, plasma cell antibody secretion and
lifespan are primarily defined by non-transcriptional
metabolic traits.

INTRODUCTION

Upon infection or vaccination, naive B cells become activated by

foreign antigens, and a subset of these cells differentiate into

antibody-secreting plasma cells. Once formed, plasma cells

secrete antibodies constitutively as long as they live (Manz

et al., 1998; Slifka et al., 1998). Because these antibodies pre-

exist subsequent exposures to pathogens, plasma cells have

the ability to provide sterilizing immunity and prevent re-infec-

tion. As a result, plasma cells and the antibodies they produce

are the primary determinants of humoral immunity following

vaccination (Zinkernagel and Hengartner, 2006). The transience

of plasma cell persistence and consequent antibody production

is the major reason for the loss of immunity against infectious

diseases such as malaria (Weiss et al., 2010; White et al.,

2015). Reciprocally, long-lived plasma cells pose a major prob-

lem in certain autoimmune disorders and are the cell of origin

in multiple myeloma (Winter et al., 2012). A mechanistic under-

standing of plasma cell survival may provide additional targets

for the above disorders.

In T cell-dependent reactions, an initial wave of extrafollicular

plasma cells tends to be relatively short-lived and produces

germline-encoded antibodies (Sze et al., 2000). These cells

form an early response to provide partial control of the infection

until plasma cells encoding higher affinity antibodies emerge

later from the germinal center reaction. As the germinal center

progresses, there is a concomitant increase in both the affinity

of the encoded antibodies as well as in the lifespans of the

selected plasma cells (Weisel et al., 2016). Yet germinal centers

are not required per se for the formation of long-lived plasma

cells. T cell-independent responses, which yield neither germinal

centers nor robust immunological memory, can also yield

plasma cells of extended lifespans, as well as a proliferative

subset of antibody-secreting cells that together maintain serum

antibodies long after immunization (Bortnick et al., 2012; Rey-

nolds et al., 2015; Savage et al., 2017). These and other data

demonstrate substantial functional heterogeneity in ontogeny

and lifespan within the plasma cell compartment (Amanna

et al., 2007), but the underlying molecular basis is unclear.

We reasoned that coupling specific metabolic and transcrip-

tional properties in conjunction with other markers would allow

for prospective separation of new plasma cell subsets with a

range of lifespans. This in turn would allow for an assessment
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of how metabolic, transcriptional, and endoplasmic reticulum

(ER) stress pathways integrate to regulate plasma cell lifespan

and antibody secretion. Using this strategy, we found a very

limited correlation between transcriptional changes, ER stress

responses, and plasma cell lifespan. Instead, nutrient uptake

and catabolism consistently distinguished plasma cell subsets

with differing lifespans and antibody secretion rates.

RESULTS

Prospective Separation of Developmentally Distinct
Plasma Cell Subsets with Varying Lifespans
We reasoned that prospectively separating plasma cells into

functionally distinct groups would provide a cellular foothold to

define pathways that regulate lifespan. Intracellular staining for

immunoglobulin k (Igk) demonstrated very high levels of anti-

bodies in almost all CD138high cells (Figure S1A). We further

separated polyclonal CD138+ plasma cells in the spleen and

bone marrow, formed in response to natural infections in the col-

ony, based on uptake of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-

4-yl)amino)-2-deoxyglucose (2NBDG), a fluorescent glucose

analog (Yoshioka et al., 1996), and expression of B220, which

marks relatively short-lived and/or proliferative and immature

cells (Chernova et al., 2014; Kallies et al., 2004). Using these

criteria, splenic plasma cells could be readily separated into

four distinct subsets (Figure S1B). Although all plasma cells

imported 2NBDG above background levels, for simplicity we

designate the subsets gated as in Figure S1B as either

2NBDG+ or 2NBDG�. Bone marrow plasma cells were domi-

nated by the B220�2NBDG+ subset, whereas the other subsets

were too rare to work with easily (Figure S1B). Therefore, the

B220�2NBDG+ subset was specifically purified for all subse-

quent analyses of bone marrow plasma cells.

To quantify the half-lives of plasma cell subsets, we performed

pulse-chase experiments using bromodeoxyuridine (BrdU).

Mice were provided BrdU in the drinking water for 1 week, fol-

lowedby either 0, 1, or 2weeks ofwater without BrdU (Figure 1A).

Animals were then injected with 2NBDG and sacrificed 15 min

later. The splenic B220+2NBDG� subset demonstrated the

shortest half-life of approximately 3–4 days, followed by the

B220�2NBDG� subset (4–6 days), B220+2NBDG+ cells

(5–18 days), B220�2NBDG+ cells (8–12 days), and bone marrow

(BM) plasma cells, which showed no turnover during this limited

3-week experiment (Figure 1A). For B220+2NBDG+ and

B220�2NBDG+ cells, the BrdU decay rates varied between

weeks 2 and 3. These data suggest additional heterogeneity

within these subsets, with a fraction of cells that either proliferate

or die rapidly, and another subset that persists more durably

without division. Thus, plasma cells that import high levels

of 2NBDG have longer half-lives than do their 2NBDG�

counterparts.

Loss of BrdU retention during the chase period could have

been caused by death, proliferation, or differentiation to a

distinct plasma cell subset. To distinguish between these possi-

bilities, we first quantified antigen-specific plasma cell numbers

over time in each subset after immunization with alum-adju-

vanted 4-hydroxy-3-nitrophenylacetyl-ovalbumin (NP-OVA), a

T cell-dependent antigen. The initial NP-specific response at

1 week was dominated by the 2NBDG� groups, with nearly

80% of antigen-specific plasma cells contained within

B220+2NBDG� and B220�2NBDG� subsets (Figure 1B). Never-

theless, NP-specific cells could also clearly be found within the

B220�2NBDG+ and B220+2NBDG+ subsets (Figure 1B), sug-

gesting the contemporaneous generation of each of these four

plasma cell populations. At these early time points, very few

NP-specific bone marrow plasma cells were found (data not

shown). Subsequent weeks revealed that NP-specific cells

were rapidly lost from the 2NBDG� subsets, whereas after an

initial decay, antigen-specific cell numbers were relatively stable

in both 2NBDG+ subsets (Figure 1B). These data mirror the BrdU

pulse-chase experiments above and suggest that the major

portion of plasma cell turnover in each of these subsets is driven

by death. Moreover, the contemporaneous formation of multiple

plasma cell subsets argues against a strict developmental hier-

archy between these groups.

Initial efforts to determine whether plasma cell subsets can

interconvert failed because of poor cell recovery after adoptive

transfer. Therefore, as an alternative approach, we quantified

CD93 expression. CD93 is a marker of developmental maturity

and is itself required for long-term maintenance of plasma cells

(Chevrier et al., 2009). The percentage of CD93+ cells was some-

what lower in 2NBDG� plasma cell subsets, but each subset dis-

played a substantial fraction of mature CD93+ cells (Figure 1C).

These data again suggest that each plasma cell subset defined

by B220 expression and 2NBDG uptake is formed and matures

independently of one another.

To further examine the developmental relationships between

plasma cell subsets, we performed immunoglobulin repertoire

sequencing of polyclonal populations. Within the immunoglob-

ulin G (IgG) isotypes, we observed very little overlap (<10% for

most comparisons) between B220+ and B220� subsets, both

within the spleen and bone marrow (Figures 1D and S1C). These

data are consistent with previous studies demonstrating differ-

ential light chain usage between B220+ and B220� subsets

(Chernova et al., 2014). IgM-expressing plasma cells showed

somewhat more overlap (15%–25%) between all subsets (Fig-

ures 1D and S1C). Although this may reflect somewhat more

interconversion across immunoglobulin M+ (IgM+) plasma cell

subsets, it seems likely that this overlap occurs because these

cells arise from precursor B-1 cells (Savage et al., 2017), which

have relatively restricted repertoires (Yang et al., 2015). Within

the B220+ or B220� subsets, we observed 15%–20% overlap

between CDR3 nucleotide sequences of 2NBDG+ and 2NBDG�

cells (Figures 1D and S1C). Two of the most diverse subsets

were the B220+2NBDG� IgG and the B220+2NBDG+ IgG groups

(Figure S1D). Despite their diversity, these two populations

showed themost overlap (�25%) of all sets of comparisons (Fig-

ure 1D). Reciprocally, the bone marrow IgG group was among

the least diverse (Figure S1D), yet showed minimal overlap

with any other subset in the same animal (Figure 1D). Thus, it

does not appear that diversity per se artificially suppresses the

clonal overlap between two groups. These data suggest that

developmental interconversion might account for a minor

portion of ontogeny, but that themajority of plasma cell immuno-

globulin sequences in each subset are unique. We conclude that

fluorescent glucose uptake can be used to purify plasma cells of

2480 Cell Reports 24, 2479–2492, August 28, 2018



Figure 1. Glucose UptakeCorrelateswith Long

Half-Lives in Plasma Cell Subsets

(A)Mice were fed BrdU in the drinkingwater for 1week

and assessed for incorporation and retention at 0, 1,

and 2 weeks post-BrdU withdrawal. Half-lives of each

plasma cell population were calculated at weeks 1

and 2 of the chase period and are shown above each

dataset. Data are cumulative from two independent

experiments. Mean values ± SEM are shown.

(B) Mice were immunized with NP-OVA, and antigen-

specific plasma cells were assessed 1, 2, and 3weeks

thereafter. Example flow cytometric plots (left) and

quantification (right) are shown from CD138-enriched

cells and surface NP staining. Data are cumulative

from two independent experiments. Mean values ±

SEM are shown, as are the fold decreases relative to

the previous time point.

(C) Representative CD93 staining of each plasma cell

subset is shown to the left. Cumulative data from two

independent experiments are shown to the right. Each

data point represents cells from one mouse, and

subsets from the samemouse are connected by lines.

*p < 0.05, by paired one-way ANOVA with post hoc

Tukey’s multiple comparisons test.

(D) Heatmap showing percent clonal overlap between

CDR3 nucleotide sequences of plasma cell pop-

ulations. Plasma cell populations were sorted and

immunoglobulin heavy chain VDJ sequences were

amplified with common V region primers and either

Cm- or pan-Cg-specific primers. Heatmap is derived

from one individual mouse out of a total of three

analyzed. Data from the remaining mice are shown in

Figure S1.
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differing lifespans and to help define other pathways that regu-

late survival, independently of developmental relationships.

Amino Acids Are Limiting for Plasma Cell Respiration
and Antibody Secretion
Imported glucose is used both to glycosylate antibodies and to

provide spare respiratory capacity, thereby allowing long-lived

plasma cells to survive (Lam et al., 2016). This suggests a model

in which the very nutrients used to synthesize immunoglobulins

are also used to promote survival and energy metabolism in anti-

body-secreting cells (Lam and Bhattacharya, 2018). To extend

upon this model, we assessed plasma cell metabolism of amino

acids. We first assessed CD98/SLC3A2 expression, a common

subunit for many amino acid transporters (Mastroberardino

et al., 1998), and thus a marker of amino acid availability. CD98

expression is controlled by the transcription factor BLIMP1 and

thus is very high in plasma cells (Shi et al., 2015; Tellier et al.,

2016). CD98 deficiency leads to severe antibody defects, mostly

as a function of its adhesion domain being required for activated

B cell proliferation (Cantor et al., 2009), but amino acid transport

is likely to be essential at the plasma cell stage (Tellier et al.,

2016). 2NBDG� plasma cells expressed modestly but consis-

tently lower cell surface levels of CD98 than did 2NBDG+ cells

(Figure 2A). This difference was not simply a function of cell

size, because B220+2NBDG�, B220�2NBDG+, and bone

marrow plasma cells all showed comparable forward scatter

measurements (Figure S2). Amino acids can also be derived

intrinsically by autophagy as cellular components are recycled.

Although autophagy is normally inversely correlated with extra-

cellular amino acid uptake, 2NBDG+ plasma cells modestly but

consistently stained more brightly with a dye that marks auto-

phagosomes (An et al., 2017) than did 2NBDG� cells (Figure 2B).

These autophagy data are consistent with previous human

plasma cell studies (Halliley et al., 2015).

The changes in CD98 expression and autophagy dye staining

were subtle and of unclear functional significance. Moreover,

many amino acids are transported independently of CD98 and

would not be accounted for in these analyses. Therefore, we

sought to perform functional assays to test the sensitivity of

plasma cell subsets to extracellular amino acid concentrations.

Plasma cells that are genetically deficient in autophagy display

reduced levels of ATP (Pengo et al., 2013), suggesting that

2NBDG� cells may also display reduced energy metabolism

when amino acids are limiting. Indeed, a retrospective analysis

of our previous work revealed that primary plasma cells assayed

under physiological amino acid concentrations have lower levels

of respiration than cells in standard RPMI media (Figure 2C),

which have supraphysiological concentrations of amino acids

(Lam et al., 2016). This difference was most pronounced in

2NBDG� plasma cells (Figure 2C). To determine whether amino

acid availability also limits antibody secretion by plasma cells,

we cultured each subset with physiological or supra-physiolog-

ical concentrations of amino acids in otherwise identical media.

A clear association was observed between elevated amino acid

Figure 2. Amino Acids Are Limiting for

Plasma Cell Respiration and Antibody

Secretion

(A) CD98 expression in plasma cell populations is

shown as a representative plot (left) and quantified

as mean fluorescence intensity (MFI) values to the

right. Data are cumulative from two independent

experiments, and each point represents cells from

an individual mouse. Mean values ± SEM are

shown. *p < 0.05, **p < 0.005, ***p < 0.0005 by one-

way ANOVA with post hoc Tukey’s multiple com-

parisons test.

(B) Autophagosome staining of plasma cell pop-

ulations. Representative graph of autophagy blue

staining (left) and quantification of MFI values cu-

mulative from two experiments (right). Each data

point represents cells from an individual mouse,

and subsets from the same animal are connected

by lines. *p < 0.05, **p < 0.005 by paired one-way

ANOVA with post hoc Tukey’s multiple compari-

sons test.

(C) Oxygen consumption rates of 2NBDG+ or

2NBDG� cells cultured either in physiological

media or media with supraphysiological concen-

tration of amino acids. Data from the same

experiment are connected by lines. *p < 0.05 by

Student’s two-tailed paired t test.

(D) Antibody secretion analysis of plasma cell

populations cultured for 24 hr either in physiolog-

ical media or media with supraphysiological con-

centrations of amino acids. *p < 0.05, ***p < 0.0005

by two-way ANOVA with post hoc Sidak’s multiple

comparisons test.

2482 Cell Reports 24, 2479–2492, August 28, 2018



concentrations and antibody secretion rates in most subsets

(Figure 2D). 2NBDG+ plasma cells continued to secrete more an-

tibodies than did 2NBDG� cells under both low- and high-amino

acid conditions (Figure 2D). This enhanced secretion by 2NBDG+

cells occurred despite apparently elevated levels of autophagy

(Figure 2C), which is known to limit immunoglobulin production

(Pengo et al., 2013).

Previous studies on myeloma cell lines have demonstrated

that glutamine catabolism is essential for energy metabolism,

amino acid production, and survival (Garcia-Manteiga et al.,

2011; Thompson et al., 2017). 13C-glutamine tracing experi-

ments on primary human long-lived plasma cells demonstrated

robust contributions to glutamate and aspartate synthesis, and

labeled carbons were readily observed in the tricarboxylic acid

(TCA) cycle intermediatesmalate and fumarate (Figure 3A). How-

ever, no label was detected in citrate or aconitate (Figure 3A).

Figure 3. Glutamine Catabolism Links

Mitochondrial Function to Amino Acid

Biosynthesis

(A) Liquid chromatography-mass spectrometry

analysis of 13C enrichment in human bone marrow

plasma cell intermediary metabolites. Plasma cells

were cultured for 18 hr with uniformly labeled
13C-glutamine-containing media. Isotopologue

distributions were corrected for natural abundance

and isotope impurity. Mean values of four biolog-

ical replicates ± SEM are shown.

(B) Schematic of glutamine contribution to the TCA

cycle in plasma cells. Red indicates intermediates

in which glutamine-derived carbons are found.

Thus, glutamine is used for anaplerotic

reactions to generate glutamate and

aspartate (Figure 3B). By contributing to

succinate oxidation, glutamine also pro-

vides electrons for respiration (Lehninger

et al., 2013). Although glutamine alone is

unlikely to account for the entirety of the

link, these data confirm that the same nu-

trients used to maintain mitochondrial

function are also used to generate the

amino acid building blocks for immuno-

globulin synthesis. It is also likely that

amino acid availability promotes antibody

secretion through other mechanisms

aside from immunoglobulin translation

(Zacharogianni et al., 2011).

ER Stress Responses Are Similar
across Plasma Cell Subsets
To define how metabolic modules inte-

grate with transcriptional outputs, we first

focused on ER stress responses, which

can link these pathways. 13C tracing ex-

periments in human bone marrow plasma

cells revealed that a substantial portion

of uridine diphosphate N-acetylglucos-

amine (UDP-GlcNac), a precursor to

glycosylation sugars, is generated by import of extracellular

glucose (Figure S3). Reductions in protein glycosylation and

subsequent misfolding of antibodies trigger ER stress responses

in plasma cells (Hickman et al., 1977). Given that short-lived

plasma cells import relatively little glucose, we reasoned that

they may underglycosylate proteins and antibodies, and thus

be subject to more ER stress than are their long-lived counter-

parts. ER stress responses are necessary for high levels of anti-

body secretion, but they can also limit the lifespan of plasma

cells (Auner et al., 2010; Reimold et al., 2001).

Splicing of XBP1 toXBP1sby IRE1a, cleavage of ATF6a into an

active transcription factor, and phosphorylation of eIF2a by eu-

karyotic translation initiation factor 2 alpha kinase 3/protein

kinase R-like endoplasmic reticulum kinase (EIF2AK3/PERK)

represent the three armsof the ERstress response (Ron andWal-

ter, 2007). Expression of ATF6a targets, such as HSPA5, varied

Cell Reports 24, 2479–2492, August 28, 2018 2483



slightly across subsets, with the lowest levels in B220+2NBDG�

and bonemarrow plasma cells (Figure 4A), but XBP1s and down-

stream targets such as EDEM1 were similarly expressed by all

groups (Figure 4A). This analysis revealed no significant changes

in ER stress responses that correlated with 2NBDG uptake and,

as a result, with lifespan (Figure 4A). Previous studies have sug-

gested that caspase-12 activation might promote ER stress-

dependent apoptosis in short-lived plasma cells (Auner et al.,

2010). Yet cleavage of a caspase-12 substratewas similar across

all plasma cell subsets (Figure 4B). These data demonstrate that

the XBP1s andATF6a-dependent ER stress pathways are similar

between short- and long-lived plasma cells. We next examined

the remaining ER stress pathway, mediated by phosphorylation

of eIF2a. Although previous studies using in vitro cultures found

minimal phosphorylation of eIF2a (Ma et al., 2010), we observed

clear activation of this pathway in all plasma cell subsets ex vivo

(Figure 4C). B220+ plasma cells displayed slightly elevated levels

of p-eIF2a relative to their B220� counterparts (Figure 4C). How-

ever, no changes were observed in p-eIF2a as a function of

2NBDG uptake (Figure 4C).

We considered the possibility that short-lived plasma cells

succumb to apoptosis because of a relative inability, rather

than an excessive propensity, to mount ER stress responses.

Neither XBP1 nor ATF6a are required for plasma cell survival

(Aragon et al., 2012; Taubenheim et al., 2012), yet the necessity

of eIF2a phosphorylation in plasma cells in vivo remains unre-

solved (Gass et al., 2008; Mielke et al., 2011; Scheuner et al.,

2001). Therefore, we first defined the relevant kinases involved

in eIF2a phosphorylation in plasma cells. We isolated human

bone marrow plasma cells, due to their abundance, and exam-

ined the effects of pharmacological inhibitors of each of the

kinases involved in eIF2a phosphorylation (Ron and Walter,

2007). Inhibition of PERK, but not of general control nondere-

pressible 2 (GCN2), protein kinase R (PKR), or Heme-regulated

inhibitor (HRI), completely eliminated p-eIF2a (Figure 4D).

Thus, PERK is solely responsible for eIF2a phosphorylation in

plasma cells.

Consistent with previous in vitro-generated plasma cells in

lipopolysaccharide (LPS) cultures (Gass et al., 2008), we

observed no effect of PERK inhibition on survival or antibody

Figure 4. ER Stress Responses Are Similar

across Plasma Cell Subsets

(A) qRT-PCR analysis of ER stress response genes

in plasma cell subsets. Data are cumulative from

two individual experiments, each with three bio-

logical replicates of each plasma cell subset. Data

are normalized to expression of HPRT. *p < 0.05,

**p < 0.005, ***p < 0.0005, ****p < 0.00005 by two-

way ANOVA with post hoc Sidak’s multiple com-

parisons test.

(B) Caspase-12 activation in plasma cell pop-

ulations. Plasma cell populations were sorted and

labeled for 1 hr with the fluorescent caspase-12

inhibitor ATAD-FMK. Representative plots (left)

and quantification (right) are shown, with each

data point representing cells from an individual

mouse. Mean values ± SEM are shown. No sig-

nificant differences were observed using one-way

ANOVA.

(C) Flow cytometric representative plots (left) and

quantification (right) of p-eIF2amean fluorescence

intensities (MFIs) in plasma cell subsets. *p < 0.05

by one-way ANOVA with post hoc Tukey’s multi-

ple comparisons test.

(D) Human bonemarrow plasma cells were treated

with inhibitors to PERK (4 nM GSK2606414),

GCN2 (500 mM SP600125 or indirubin-30-mon-

oxime), HRI (50 mM hemin), or PKR (100 mM imid-

azole-oxindole C16) for 1 hr and analyzed for

intracellular p-eIF2a. Plots of p-eIF2a represen-

tative of two independent experiments are shown.

(E) Schematic representation of mixed bone

marrow chimera experiment to assess plasma cell

population dependence on PERK (left). CD45.2+

chimerism values are shown (right) and are

cumulative from two experiments. Each symbol

represents a distinct mouse. ****p < 0.00005 by

two-way ANOVA with post hoc Sidak’s multiple

comparisons test.
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secretion ex vivo (Figures S4A and S4B). To test the importance

of PERK for plasma cell survival in vivo, we utilized conditional

Perkfl/fl mice crossed to transgenic animals ubiquitously ex-

pressing tamoxifen-inducible CreERT2 (Guthrie et al., 2016).

Equal numbers of CD45.2 Perkfl/fl or Perkfl/fl CAGG-CreERT2

bone marrow cells were mixed with wild-type competitor

CD45.1 bone marrow cells and transplanted into irradiated

CD45.1 recipients. At 8 weeks post-transplant, mice were given

tamoxifen-containing chow for 2 weeks. CD45.2 chimerism was

then measured of B lymphocytes and plasma cells formed in

response to natural infections in the colony. Chimerism of

splenic B cells was similar irrespective of Perk genotype (Fig-

ure 4E). Within the plasma cell subsets, we observed a small

but consistent reduction in PERK-deficient B220+2NBDG�

and B220+2NBDG+ plasma cells relative to controls (Figures

4E and S4C). In contrast, no statistically significant reduc-

tions were observed in PERK-deficient B220�2NBDG� or

Figure 5. Plasma Cells with Diminished

Glucose Uptake Maintain Translation Rates

but Secrete Relatively Few Antibodies

(A) Representative plots (left) and quantification of

mean fluorescence intensity (MFI) values (right) of

total surface and intracellular Igk staining of splenic

and bonemarrowCD138+ plasma cells. Each point

represents an individual mouse, and data are cu-

mulative of three independent experiments. Mean

values ± SEM are overlaid. No significant differ-

ences were observed by one-way ANOVA.

(B) Mice were injected with puromycin and

2NBDG, and sacrificed 15 min later. Representa-

tive puromycin staining (left) and quantification of

MFI values (right) of splenic and bone marrow

plasma cells are shown. Data are from one repre-

sentative experiment of three total. Each point

represents an individual mouse, and subsets from

the same mouse are linked by lines. No significant

differences were observed by paired one-way

ANOVA.

(C) Plasma cell populations were sorted and

cultured for 24 hr with or without protein translation

inhibitor cycloheximide. Representative total sur-

face and intracellular Igk staining (left) and quan-

tification (right) of splenic and bonemarrow plasma

cells. Each point represents an individual mouse,

and data are cumulative of two independent

experiments. Subsets from the same mouse are

linked by lines. *p < 0.05, ***p < 0.0005,

****p < 0.00005 by paired two-way ANOVA with

post hoc Sidak’s multiple comparisons test.

(D) Antibody secretion measured by ELISA after

overnight culture of plasma cell subsets from

spleen and bone marrow. Each point represents

a plasma cell subset from one individual mouse.

*p < 0.05, **p < 0.005 by one-way ANOVAwith post

hoc Tukey’s multiple comparisons test. Data are

cumulative from three independent experiments.

B220�2NBDG+ plasma cells (Figure 4E).

Bone marrow plasma cell chimerism

was also similar between genotypes, but

we were unable to confirm efficient dele-

tion of Perk in these cells (Figure S4D). These data demonstrate

that PERK promotes either survival or formation of B220+ plasma

cells in vivo. However, this dependency on PERK is not corre-

lated with glucose uptake, and thus fails to explain inherent dif-

ferences in survival between plasma cell subsets.

ER stress in 2NBDG� cells could potentially be mitigated by

reducing overall rates of protein and antibody production.

Indeed, examination of electron micrographs revealed no

consistent alterations in ER lumenal distension (Figures S5A

and S5B), a marker of misfolded protein accumulation (Oslowski

and Urano, 2011). Each plasma cell subset also displayed similar

total levels of Igk protein and mRNA (Figures 5A and S5C). To

test whether the rates of protein translation differ between cell

types, we employed in vivo ribopuromycylation in which puromy-

cin is incorporated into nascent polypeptides, leading to chain

termination (Seedhom et al., 2016). Mice were injected with pu-

romycin and 2NBDG, sacrificed 15 min later, and intracellular
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levels of puromycin were measured. All plasma cell subsets had

similar levels of puromycin labeling, and there was no correlation

between 2NBDG uptake and translation rates (Figure 5B).

Consistent with these findings, each subset displayed similar

levels of phosphorylated S6 (Figure S5D), a marker of mamma-

lian target of rapamycin (mTOR) activation, which promotes

translation and antibody synthesis in plasma cells (Jones et al.,

2016). Together, these data demonstrate that despite marked

differences in glucose uptake, no compensatory changes are

engaged in plasma cell subsets to modulate immunoglobulin

synthesis and protein translation.

Another mechanism that could mitigate stress responses is

protein degradation. To quantify the rates of antibody turnover,

we treated plasma cells with the protein translation inhibitor

cycloheximide for 24 hr and quantified intracellular levels of

Igk. Although Igk light chain itself is infrequently glycosylated, it

is degraded unless paired with properly folded and glycosylated

immunoglobulin heavy chain isotypes (Chillarón and Haas,

2000). As in Figure 5A, antibody levels were similar in all subsets

in the untreated control group (Figure 5C). Upon cycloheximide

treatment, however, both 2NBDG� subsets showed a substan-

tial loss in Igk relative to their 2NBDG+ counterparts (Figure 5C).

The loss of antibodies in 2NBDG� plasma cells after cyclohexi-

mide could be driven by degradation or by antibody secretion.

However, consistent with Figure 2D, 2NBDG� cells secreted

substantially fewer antibodies than did their 2NBDG+ counter-

parts (Figure 5D). Thus, 2NBDG� plasma cells degrade anti-

bodies more rapidly than do their 2NBDG+ counterparts, and

this may be a mechanism by which they avoid excessive ER

stress.

Transcriptional Profiles Are Similar between Plasma
Cell Subsets
Given that ER stress responses were similar between short- and

long-lived plasma cell subsets, we examined the global tran-

scriptional profiles of these subsets in an unbiased way to iden-

tify other genes that are correlated with glucose uptake and life-

span. After excluding immunoglobulin genes, RNA-sequencing

(RNA-seq) comparisons of short-lived B220�2NBDG� and

long-lived B220�2NBDG+ plasma cells revealed remarkably

similar transcriptional profiles. A total of 29 genes, representing

less than 0.2% of the total transcriptome, showed a statistically

significant increase in the 2NBDG+ subset (>2-fold change in

expression, adjusted p value < 0.05; Figure 6A). Within the

B220+ plasma cells, 341 genes were differentially expressed in

2NBDG+ cells relative to their 2NBDG� counterparts (Figure 6A,

middle panel). A comparison of long-lived bone marrow

B220�2NBDG+ plasma cells with short-lived splenic

B220�2NBDG� plasma cells revealed more robust changes,

with 900 differentially expressed transcripts (Figure 6A, right

panel). Pro-apoptotic Bcl-2-like protein 11 (BIM) was modestly

decreased in B220�2NBDG� cells relative to their 2NBDG+

counterparts, but in none of these comparisons did we observe

differential expression of a number of other known plasma cell

survival factors, such as myeloid leukemia cell differentiation

protein 1 (MCL1), B cell maturation antigen (BCMA), CD28, or

interleukin-6R (IL-6R) (Minges Wols et al., 2002; O’Connor

et al., 2004; Peperzak et al., 2013; Rozanski et al., 2011).

To define a common transcriptional signature used by

2NBDG+ cells, we performed intersection analysis. Only 15

genes were coordinately upregulated and 15 genes downregu-

lated in B220�2NBDG+ or B220+2NBDG+ splenic plasma cells

relative to their 2NBDG� counterparts (Figure 6B). We next

compared these 30 genes with transcripts differentially ex-

pressed in human long- versus short-lived plasma cells. We

observed 66 genes elevated, including pro-survival CD28, and

20 genes downregulated in CD19� human long-lived plasma

cells relative to their CD19+ short-lived counterparts (Figure 6C).

Only one gene, Tmem176b, demonstrated overlap between

genes consistently elevated in mouse 2NBDG+ plasma cells

and genes elevated in human long-lived plasma cells (Figure 6D).

Thus, we find no evidence for an evolutionarily conserved tran-

scriptional signature associated with enhanced glucose uptake

or plasma cell longevity.

Pathway overrepresentation analyses on individual compari-

sons between plasma cell subsets revealed elevations in cell-cy-

cle gene expression in B220+2NBDG� cells and, unexpectedly,

an elevation in neutrophil degranulation genes in bone marrow

plasma cells (Figure 6E). This was surprising given that Ly6g-

and CD11c-expressing neutrophils and other myeloid cells

were specifically excluded from the cells sorted for RNA-seq.

Because the levels of transcripts for many of these neutrophil

degranulation genes were low, the data suggested that poten-

tially only a subset of plasma cells expressed this unusual

signature.

Single-Cell RNA-Sequencing Reveals Plasma Cell
Subsets with Distinct Isotypes and Antimicrobial
Peptide Expression
We next performed single-cell RNA-seq on approximately 1,000

cells of each plasma cell subset to define transcriptional hetero-

geneity. Igk constant region transcripts represented an average

of 30% of the total transcriptome of each cell (Figure S6A),

consistent with previous plasma cell RNA-seq studies (Shi

et al., 2015). Other plasma cell markers including IGJ (Rinken-

berger et al., 1996), LY6A/E (Wilmore et al., 2017), TNFRSF13B

(Pracht et al., 2017), and XBP1 (Reimold et al., 2001) were highly

expressed, confirming the identity and purity of these cells (Fig-

ures S6A and S6B).

After excluding immunoglobulin transcripts, t-distributed sto-

chastic neighbor embedding (t-SNE) analysis on concatenated

sequences revealed nine clusters (Figure 7A). Three hundred

fifty-two genes were preferentially expressed (p < 0.1, t test

with Benjamini-Hochberg correction for multiple tests) by at

least one cluster relative to the rest of the population. Pearson

distance measurements using this set of genes revealed that

clusters 9 and 6 were related and distinct from each of the

other clusters (Figure 7B). The remaining clusters were distin-

guished from one another by a much smaller group of genes

(Figure 7B). We next overlaid data points from each plasma

cell population onto the t-SNE plot to determine the composi-

tion of each subset and cluster (Figure 7C). The B220+2NBDG�

subset, which is the shortest lived plasma cell population (Fig-

ure 1A), was mainly distributed between the unique clusters 6

and 9 (Figures 7C and S6C). In contrast, the long-lived bone

marrow plasma cell subset was concentrated in clusters 1
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and 5 (Figures 7C and S6C). Each of the other plasma cell pop-

ulations showed more heterogeneous distributions across the

clusters (Figures 7C and S6C). These data demonstrate that

despite marked metabolic differences, each plasma cell sub-

set, defined by B220 expression and 2NBDG uptake, is distrib-

uted across most of these transcriptionally defined clusters.

Thus, plasma cell metabolic properties do not correlate with

transcriptional profiles.

To determine how this transcriptional heterogeneity relates to

other markers and strategies to separate plasma cell subsets

that have been used by others, we examined expression of

CD93, major histocompatibility complex class II (MHC class II),

Figure 6. Transcriptional Profiles Are Similar between Plasma Cell Subsets

(A) RNA-seq analysis of gene transcript levels between B220�2NBDG� versus B220�2NBDG+, B220+2NBDG� versus B220+2NBDG+, or B220�2NBDG� versus

BM. Volcano plots of gene expression fold changes between 2NBDG+ and 2NBDG� populations are shown. Adjusted p values were calculated using DESeq2,

with red and blue boxes representing genes that are significantly upregulated or downregulated, respectively, in 2NBDG+ cells. Each dot represents a single

gene. Three biological replicates were analyzed for each population.

(B) Venn diagram analysis of common transcripts either upregulated (left) or downregulated (right) in 2NBDG+ populations.

(C) RNA-seq analysis of gene transcript levels between human CD19+ short-lived plasma cells (SLPCs) and CD19� long-lived plasma cells (LLPCs). Volcano plot

analysis of differential transcript expression between human LLPCs and SLPCs is shown. Each dot represents a single gene. Four biological replicates were

analyzed for each population. Adjusted p values were calculated using DESeq2. Each dot represents a single gene. Four biological replicates were analyzed for

each population.

(D) Little overlap between overexpressed genes in 2NBDG+murine and human long-lived plasma cell populations (top) or 2NBDG�murine and human short-lived

plasma cell populations (bottom).

(E) Pathway analysis of genes downregulated in bone marrow plasma cells. Heatmap representation of genes and their expression across each biological

replicate of each plasma cell population. Color scale legend depicts row-normalized Z scores.
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CXCR3, and mKi67. CD93 mRNA expression did not uniquely

associate with or exclude any clusters (Figure 7D). MHC class

II/H2-Aa and CXCR3, which mark BLIMP1low plasmablasts (Kal-

lies et al., 2004; Shi et al., 2015), were preferentially expressed by

clusters 6 and 9 (Figure 7D). In contrast, the proliferation marker

mKi67 was expressed primarily in cluster 9 (Figure 7D). Other

markers, such as CD19 and BLIMP1 itself (Chernova et al.,

2014; Kallies et al., 2004; Pracht et al., 2017), were near the lower

limit of detection for single-cell RNA-seq, which captures only

�10%ofmRNAs (Macosko et al., 2015), and thus did not resolve

the populations further (Figure S6B).

We next used all 352 genes that were preferentially and statis-

tically significantly expressed by at least one cluster to perform

over-representation analysis, using the Consensus Pathway

database (Herwig et al., 2016), to determine the biological signif-

icance of the heterogeneity. Biological pathways that were

significantly over-represented (q value < 10�5) included transla-

tion, ER protein processing, cell cycle, mRNA splicing, electron

transport chain, proteasome, and, as noted above, neutrophil

Figure 7. Plasma Cell Transcriptional Het-

erogeneity Is Defined by Proliferative Genes

and Neutrophil Degranulation Pathways

(A) t-SNE analysis of single-cell RNA-seq data

concatenated from all plasma cell subsets. Each

data point represents one cell, and nine identified

clusters are depicted in distinct colors.

(B) All 352 genes were plotted that were statistically

significantly and preferentially expressed by at least

one cluster relative to the remaining population

(adjusted p < 0.1, Benjamini-Hochberg test). Each

gene and cluster were ordered and grouped based

on average linkage and depicted in the corre-

sponding dendrograms. Red indicates high relative

expression, and blue indicates low expression,

shown as row-normalized Z scores.

(C) Data points from each plasma cell subset were

overlaid as dark blue dots onto the concatenated

t-SNE plot.

(D) Expression of plasma cell marker genes are

depicted as a heatmap overlaid onto the concate-

nated t-SNE plot.

(E) Pathway analysis of 352 significant cluster-

specific genes. These genes were over-repre-

sented in translation, cell cycle, electron transport

chain, ER protein processing, mRNA splicing, pro-

teasome, and neutrophil degranulation pathways

as analyzed using the Consensus Pathway data-

base (q value < 10�5). Red indicates high relative

expression, and blue indicates low expression,

shown as row-normalized Z scores.

degranulation (Figure 7E). Clusters 6 and

9, which compose most of the short-lived

B220+2NBDG� subset (Figure 7D), prefer-

entially expressed genes in the translation,

ER protein processing, electron transport

chain, and proteasome pathways (Fig-

ure 7E). Clusters 6 and 9 were distin-

guished from each other by genes

involved in cell-cycle and mRNA splicing

(Figure 7E), consistent with mKi67 expression observed in clus-

ter 9 (Figure 7D). These data suggest that cluster 9 is composed

of proliferative B220+2NBDG� plasmablasts, whereas cluster 6

is composed of non-cycling B220+2NBDG� cells. Indeed, re-

ports by others and our own previous data suggest that a subset

of the B220+ plasma cells is proliferative (Chernova et al., 2014;

Lam et al., 2016). As above in Figure 6E, only the neutrophil

degranulation pathway was able to distinguish the remaining

clusters (Figure 7E). Other highly expressed granulocyte tran-

scripts such as CSF3R and LY6G were undetectable (Fig-

ure S6B), arguing against neutrophil contamination.

Inclusion of immunoglobulin constant region genes in the sin-

gle-cell RNA sequencing (scRNA-seq) analysis revealed differ-

ences in isotype usage across plasma cell subsets. For example,

75% of B220�2NBDG� plasma cells used IgM, whereas nearly

60% of bone marrow plasma cells were IgA+ (Figure S6D),

consistent with previous reports (Wilmore et al., 2018). However,

each isotype was observed at some frequency in every plasma

cell subset, demonstrating that antibody class does not strictly
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define plasma cell longevity or metabolic programs. Expression

of neutrophil degranulation genes correlated somewhat with

antibody isotype (Figure S6E), but in none of these cases was

this correlation absolute. For example, IgG1+ plasma cells ex-

pressed on average higher levels of Slpi than did IgM+ plasma

cells (Figure S6E). However, a small subset of IgM+ cells ex-

pressed very high levels ofSlpi (Figure S6F). Thus, transcriptional

programs and antibody isotype independently diversify plasma

cell function.

DISCUSSION

Plasma cells vary greatly in lifespan, depending on the type of

infection or vaccine, the timing of ontogeny, and their anatom-

ical location. Defining pathways that promote plasma cell

longevity is a major goal for vaccine development, especially

for immunizations that lead to very transient protection against

infections. Reciprocally, identifying ways to antagonize long-

lived plasma cells in the context of multiple myeloma and auto-

immunity is also an important clinical goal. We observed that

fluorescent glucose analog uptake correlates with plasma cell

lifespan and allows for further purification and prospective

isolation of long- and short-lived subsets when coupled with

B220 expression. The usage of fluorescent glucose uptake

thus helps facilitate the prospective isolation of short- and

long-lived plasma cells.

Clearly, however, much still remains unresolved regarding the

mechanisms of plasma cell survival. Although glucose uptake

correlates with plasma cell longevity, it does not fully explain

the heterogeneity. We observed substantial differences in life-

spans among plasma cells that import the same amount of

glucose. This led us to explore other pathways, such as ER

stress and transcriptional regulation of survival genes, which

may integrate with metabolism and nutrient uptake to tune

plasma cell lifespan. Yet against all our predictions, we found

almost no consistent changes in ER stress or transcription

between mouse long- and short-lived plasma cell subsets.

Although transcriptional changes are essential during plasma-

blast differentiation to establish a metabolic program (Guo

et al., 2018; Jash et al., 2016; Price et al., 2018; Wang and Bhat-

tacharya, 2014), these changes seem not to further distinguish

mature plasma cell subsets (Valor et al., 2017).

The transcriptional changes we did observe were mainly

linked to cell proliferation and, unexpectedly, genes traditionally

involved in neutrophil effector functions. Although we observed

no evidence of neutrophil-like granules in plasma cells, it is

possible that these proteins are constitutively released and allow

certain plasma cell subsets to perform non-canonical effector

functions to help clear pathogens and resolve damage. Such

properties are reminiscent of tumor necrosis factor alpha

(TNF-a)- and inducible nitric oxide synthase (iNOS)-producing

IgA+ plasma cells in the intestine, which help maintain microbial

homeostasis (Fritz et al., 2011). iNOS itself promotes plasma cell

survival (Saini et al., 2014), yet it seems unlikely that the innate

immune pathways identified here would be directly tied to

plasma cell lifespan given that the differences are not correlated

with metabolic properties. The functional importance of these

unusual signatures clearly needs to be explored more deeply.

The major pathways that consistently distinguish long- from

short-lived plasma cells are non-transcriptional. Long-lived

plasma cells that import high levels of glucose and also express

high cell surface levels of CD98, a common subunit to many

amino acid transporters (Mastroberardino et al., 1998), are less

sensitive to reductions in extracellular amino acid concentrations

and secrete more antibodies than do their short-lived counter-

parts. As in human long-lived plasma cells (Halliley et al.,

2015), mouse long-lived plasma cells also have elevated

autophagosome content. Glucose is used predominantly to

glycosylate antibodies, but also to generate pyruvate for spare

respiratory capacity, which in turn promotes survival (Lam

et al., 2016). Similarly, glutamine is used as a carbon source

for mitochondrial anaplerotic reactions and respiration, as well

as a building block for antibodies. Together, our findings suggest

a metabolic link between antibody secretion and lifespan. The

discovery of new pathways that enhance or unlink these proper-

ties can potentially be exploited to prolong immunity or antago-

nize autoimmunity and plasma cell malignancies.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD138 (PE conjugate) Biolegend Catalog 352306; RRID:AB_10915989

Donkey Anti-Mouse IgG (H+L)-biotin conjugate Jackson Immunoresearch 709-065-149; RRID:AB_2340507

streptavidin horseradish peroxidase BD Biosciences 554066

B220-allophycocyanin (APC)-Cy7 Biolegend 103224; RRID:AB_313007

CD93-PE-Cy7 Biolegend 136506; RRID:AB_2044012

p-S6-V450 BD Biosciences 561457; RRID:AB_10643763

p-eIF2a-Alexa 647 Abcam ab196191

Igk-PE-Cy7 BD Biosciences 560667; RRID:AB_1727535

CD45.2-BV510 Biolegend 109837; RRID:AB_2561393

CD45.1-BV605 Biolegend 110738; RRID:AB_2562565

Puromycin Developmental Studies

Hybridoma Bank

PMY-2A4; RRID:AB_2619605

biotin mouse anti-mouse IgG2a[b] BD Biosciences 553504; RRID:AB_394889

BV605 Streptavidin Biolegend 405229

Chemicals, Peptides, and Recombinant Proteins

Puromycin EMD Millipore 540222

Histopaque 1119 Sigma 11191

GSK2606414 Sigma 516535

SP600125 Sigma S5567

indirubin-30-monoxime Sigma 402086

imidazole-oxindole C16 Sigma I2399

Hemin Sigma 51280

aluminum potassium sulfate Fisher S70459

NP-Ova Biosearch N-5051

4-hydroxy-3-nitrophenylacetyl-O-succinimide ester Biosearch 10634

Allophycocyanin Sigma A7472

3,30,5,50- Tetramethulbenzidine dihydrochloride hydrate Dako S1599

paraformaldehyde Electron Microscopy

Services

15710

Saponin Sigma 84510

13C-U-glucose Cambridge Isotopes CLM-1396

13C-U-glutamine Cambridge Isotopes CLM-1822

tamoxifen-containing chow Envigo TD.130860

Cycloheximide Fisher NC0667720

2NBDG Cayman Chemicals 11046

Critical Commercial Assays

CD138 enrichment beads Miltenyi 130-051-301

anti-PE microbeads Miltenyi 130-048-801

LS columns Miltenyi 130-042-401

Autophagy Assay kit Sigma MAK138

FITC BrdU Flow kit BD Biosciences BDB557891

NucleoSpin RNA isolation kit Macherey-Nagel 740902.50

SYBR Green PCR master mix Applied Biosystems 4309155

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Superscript III Reverse transcription kit Thermo Fisher 18080400

CaspGLOW 12 staining kit Biovision K172-25

SMART-Seq v4 Clontech 634888

Nextera XT DNA library kit Illumina 131-1024

Chromium Single Cell 30 Library & Gel Bead Kit 10x Genomics 120237

Deposited Data

RNA-seq data This paper NCBI GEO: GSE115860

Single cell RNA seq data This paper NCBI GEO: GSE115860

Experimental Models: Organisms/Strains

Mouse: C57BL/6N Charles River Labs Strain code 027

Mouse: B6-Ly5.1/Cr Charles River Labs Strain code 564

Mouse: Eif2ak3-tm1.2Drc/J Jackson Labs Stock No: 023066

Mouse: B6.Cg-Tg(CAG-cre/Esr1*)5Amc/J Jackson Labs Stock No: 004682

Mouse: B6.Cg-Gpi1a Thy1a Igha/J Jackson Labs Stock No: 001317

Oligonucleotides

Primers for XBP1s: 50-CTGAGTCCGaAtCAGGTGCAG-30

(forward) and 50-GTCCATGGGAAGATGTTCTGG-30 (reverse)
Sigma N/A

Primers for XBP1: 50-TGGCCGGGTCTGCTGAGTCCG (forward)

and 50-GTCCATGGGAAGATGTTCTG-30 (reverse)
Sigma N/A

Primers for HSPA5: 50-TTCAGCCAATTATCAGCAAACTCT (forward)

and 50- TTTTCTGATGTATCCTCTTCACCAGT-30 (reverse)
Sigma N/A

Primers for DDIT3: 50-CATACACCACCACACCTGAAAG (forward)

and 50-CCGTTTCCTAGTTCTTCCTTGC-30 (reverse)
Sigma N/A

Primers for EDEM1: 50-CCTCAATGTGGCCAGAACTT (forward)

and 50- CAGGACCTTTGCACAGGAAT-30 (reverse)
Sigma N/A

Primers for HPRT: 50-TTATGGACAGGACTGAAAGAC-30 (forward)

and 50-GCTTTAATGTAATCCAGCAGGT-30 (reverse)
Sigma N/A

msVHEstdseq1 forward: 50-TCTTTCCCTACACGATCTGGGAATT

CGAGGTGCAGCTGCAGGAGTCTGG-30
Sigma N/A

common mu stdseq2 reverse 50-GTGACTGGAGTTCAGACGTG

TGCTCTTCCGATCTAGGGGGAAGACATTTGGGAAGGAC-30
Sigma N/A

P5 forward Stdseq: 50- AATGATACGGCGACCACCGAGATCTA

CAC TCTTTCCCTACACGACGC-30
Sigma N/A

P7 reverse Stdseq index: CGGCATACGAGATNNNNNNNNGTG

ACTGGAGTTCAGACGTGTGTG-30 where N represents a unique

index for multiplexing.

Sigma N/A

Cg1 reverse primer 50- GGAAGGTGTGCACCGCTGGAC-30 Tiller et al., 2009 N/A

Cg2c reverse primer 50-GGAAGGTGCACACTGGAC-30 Tiller et al., 2009 N/A

Cg2c reverse primer 50-GGAAGGTGCACACTGGAC-30 Tiller et al., 2009 N/A

Cg3 primer 50-AGACTGTGCGCACACCGCTGGAC-30 Tiller et al., 2009 N/A

common Cgamma reverse primer: 50- GTGACTGGAGTTCAGA

CGTGTGCTCTTCCGATCTCAAGGTGGATAGAGAGCATCGA

TGGGG-30

Sigma N/A

Stdseq1: 50-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-30 Sigma N/A

Stdseq2: 50-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-30 Sigma N/A

Index seq: 50-GATCGGAAGAGCACACGTCTGAACTCCAGTCAC-30 Sigma N/A

Primers for PERK qRT-PCR: forward 50- GAAATCTCTGACTACAT

ACGGAC-30 reverse 50- ACACTGAAATTCCACTTCTCAC-30
Sigma N/A

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Deepta

Bhattacharya (deeptab@email.arizona.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal procedures in this study were approved by the Institutional Animal Care and UseCommittee atWashington University (pro-

tocol 20160259) and at The University of Arizona (protocol 17-266). 8-12 week old mice of both sexes were used, were age- and sex-

matched for each experiment, and littermates were used and chosen randomly in all experiments. C57Bl6/N and B6-Ly5.2/Cr

(CD45.1) mice were purchased from Charles River Laboratories, IgHa allotype mice were purchased from Jackson Laboratories,

and then housed in specific pathogen-free facilities for wild-type bone marrow and splenic plasma cells. Perkfl/fl mice and

CAGG-CreERT2 mice were purchased from Jackson Laboratories. Mice were maintained under specific pathogen-free conditions.

Euthanasia was performed by administering carbon dioxide at 1.5L/minute into a 7L chamber until 1 minute after respiration ceased.

After this point, cervical dislocation was performed to ensure death.

All human sample procedures in this study were approved by the Human Research Protection Office at Washington University.

Bone marrow was obtained from total hip arthroplasty samples from patients undergoing elective surgery (Barnes Jewish Hospital).

All samples were kept anonymous with no identifying information. The sex and age of the donors were not determined.

METHOD DETAILS

Tissue Processing
For mouse long-lived plasma cells, femurs, tibiae, humerus, and pelvic bones were isolated and crushed with a mortar and pestle.

Spleens were dissected and dissociated using frosted glass microscope slides. Non-cellular debris was removed from bonemarrow

samples by gradient centrifugation for 10 minutes at 2000 g using Histopaque 1119 (Sigma-Aldrich). Interface cells were collected

and red blood cells were lysed using a 0.15 M NH4Cl, 10 mM KHCO3, 0.1 mM EDTA (pH 7.2) solution (ACK). Cells were washed and

filtered through 70-mM nylon mesh and stained with 1 mL/107 cells anti-CD138-PE (Biolegend). Antibody-bound cells were enriched

using 1 mL/107 cells anti-PE microbeads and LS columns (Miltenyi Biotec) prior to flow cytometric analysis and sorting. Human bone

marrow plasma cells were isolated using CD138 enrichment beads (Miltenyi Biotec) as previously described (Lam et al., 2016).

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Salmon 0.9.1 https://doi.org/10.1038/

nmeth.4197

https://combine-lab.github.io/salmon/

Deseq2 2.11.40.2 https://doi.org/10.1186/

s13059-014-0550-8

https://usegalaxy.org/?tool_id=

toolshed.g2.bx.psu.edu%2Frepos%

2Fiuc%2Fdeseq2%2Fdeseq2%

2F2.11.40.2&version=2.11.40.

2&__identifer=p99wpps8cus

Cell Ranger 2.1.0 10x Genomics https://support.10xgenomics.com/

single-cell-gene-expression/software/

downloads/latest

Loupe Browser 2.0.0 10x Genomics https://support.10xgenomics.com/

single-cell-gene-expression/software/

downloads/latest

SeqGeq 1.4.0 FlowJo https://www.flowjo.com/solutions/

seqgeq/downloads

Prism 7 Graphpad https://www.graphpad.com/scientific-

software/prism/

Mixcr 2.1.3 https://doi.org/10.1038/

nmeth.3364

https://mixcr.readthedocs.io/en/latest/

install.html

Clonoplot https://doi.org/10.1186/

s12859-017-1575-2

https://bitbucket.org/ClonoSuite/

clonocalc-plot

Other

Custom physiological RPMI media Thermo Fisher Lam et al., 2016
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Bone Marrow Chimeras
For competitive reconstitutions, 5 3 106 bone marrow cells from either Perkfl/fl or Perkfl/fl:CAGG CreER littermates were mixed with

5 3 106 bone marrow cells from B6.Ly5.2 CD45.1+ mice and injected retro-orbitally into isoflurane-anesthetized 800 cGy-irradiated

B6.Ly5.2 CD45.1+ recipients. At 8 weeks post-transplant, mice were fed tamoxifen-containing chow (400 citrate; Envigo) for 2 weeks

before sacrifice and analysis.

Plasma Cell Cultures
Sorted plasma cells were cultured overnight (18-20 hours) in hypoxic conditions (37�C, 5%CO2, 5%O2) in 100ul of indicated media.

Physiological amino acid media is a custom preparation supplemented with 1% penicillin/streptomycin solution, 10% FBS, and

either 5mM or 25mM glucose as indicated and previously described (Lam et al., 2016). Supraphysiological amino acid media refers

to RPMI 1640 (Corning Cellgro 90-022-PB). For p-eIF2a inhibition experiments, cells were cultured for 1 hr in the presence of 4 nM

GSK2606414 (for PERK inhibition; Sigma-Aldrich [Axten et al., 2013]); 500 mM SP600125 (for GCN2 inhibition; Calbiochem [Robert

et al., 2009]); 500 mM indirubin-30-monoxime (for GCN2 inhibition; Calbiochem [Robert et al., 2009]); 100 mM imidazole-oxindole C16

(for PKR inhibition; Sigma-Aldrich [Jammi et al., 2003]); and 50 mM hemin (for HRI inhibition; Sigma-Aldrich [Fagard and London,

1981]) before flow cytometric analysis. Cycloheximide was used at 50 mM concentrations. Autophagy Blue was used according

to manufacturer’s instructions (Sigma-Aldrich).

Bromodeoxyuridine Experiments
Mice were fed with 2 mg/mL BrdU in the drinking water for the durations indicated. Animals were injected with 100 mg 2NBDG intra-

venously and euthanized 15 min later. Because formaldehyde ablates 2NBDG fluorescence (data not shown), plasma cell subsets

were purified by fluorescence activated cell sorting prior to fixation, permeabilization, and intracellular analysis of BrdU incorporation

and retention. Splenic plasma cells, memory B cells and CD138-enriched bone marrow plasma cells were first stained for surface

expression of respective antibodies. Cells were then purified by Fluorescence-activated cell sorting and then fixed, permeabilized,

and stained for incorporated BrdU with the FITC BrdU Flow kit (BD Biosciences) according to the manufacturer’s instructions.

2NBDG does not survive fixation, allowing for the use of fluorescein derivative-conjugated antibodies for intracellular analysis after

cells were purified by FACS.

Immunizations
Mice were immunized intraperitoneally with 100 mg NP-Ova (Biosearch), adjuvanted with Alhydrogel (Invivogen). NP-APC used

for staining was made by conjugating allophycocyanin (Sigma-Aldrich) with 4-hydroxy-3-nitrophenylacetyl-O-succinimide ester

(Biosearch Technologies).

ELISAs
Supernatant collected was serially diluted 1:4, 1:16, 1:64 in antibody buffer (PBS + 2% BSA + 0.05% Tween). Standard curves were

made with unlabeled mouse IgG (Southern Biotech) to 100, 20, 4, 0.8, 0.16, and 0.032 ng/ml. Ninety-six well high binding plates

(Corning) were coated with purified rat a-mouse Ig kappa, light chain (BD Pharmingen) at 5 mg/mL in ELISA coating buffer (0.1M

bicarbonate, pH 9.5) overnight at 4�C. Plates were washed four times with PBS + 0.05% Tween before blocking for one hour with

PBS + 2% BSA. Blocking buffer was flicked out and samples were plated for one hour at room temperature. Plates were washed

four times with PBS + 0.05% Tween. Plates were coated with 0.13 mg/mL Biotin-SP-conjugated AffiniPure Donkey Anti-Mouse

IgG (H+L) (Jackson Immunoresearch) in antibody buffer and incubated for one hour at room temperature. This secondary antibody

recognizes all isotypes due to light chain reactivity. Plates were then washed four times with PBS + 0.05% Tween. Wells were incu-

bated with 1:1000 streptavidin HRP (BD Pharmingen) in antibody buffer for one hour at room temperature. After incubation, wells

were washed 33with PBS + 0.05%Tween and 33with PBS followed by development with 100 mL of 3,30,5,50- Tetramethulbenzidine

dihydrochloride hydrate (TMB) (Dako) and quenched with 2N H2SO4. ELISA absorbance values were analyzed at 450 nm. Antibody

titers were calculated using standard curves generated with known mouse IgG concentrations.

Flow Cytometry/Sorting
All fluorescence activated cell sorting was performed on a BD FACS Aria II. Cells were sorted into phosphate-buffered saline con-

taining 5% bovine serum. All flow cytometric analysis was performed on a BD FACS Aria II, LSR II, or LSR Fortessa. Data was

analyzed using FlowJo software (FlowJo Enterprise). The following a-mouse antigen antibodies were used in this study: CD138-

phycoerythrin (PE) (281-2; Biolegend); B220-allophycocyanin (APC)-Cy7 (RA3-6B2; Biolegend); CD93-PE-Cy7 (AA4.1; Biolegend);

p-S6-V450 (N7-548, BD Biosciences); p-eIF2a-Alexa 647 (E90; Abcam); Igk-PE-Cy7 (187.1, BD Biosciences); CD45.2-BV510

(104: Biolegend); CD45.1-BV605 (A20; Biolegend). For intracellular stains of p-S6 and p-eIF2a, plasma cell subsets were first

purified by FACS, fixed with 2% paraformaldehyde (Electron Microscopy Services), and permeabilized with cold 100% methanol

prior to staining. For intracellular stains of Igk, cells were fixed with 2% paraformaldehyde and permeabilized with 0.1% saponin

(Sigma-Aldrich) prior to staining.
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qRT-PCR
Total RNAwas prepared fromdouble-sorted bonemarrowplasma cell (20,000-60,000) and four different splenic plasma cell (10,000–

100,000) populations using NucleoSpin RNA isolation kit (Macherey-Nagel) and first strand cDNA synthesis was performed with

Superscript III Reverse transcription kit using oligo (dT) primers or random hexamers (Life Technologies) according to the manufac-

turer’s instructions. qRT-PCRwas performed using SYBRGreen PCRmaster mix (Applied Biosystems) on a StepOnePlus Real-Time

PCR system (Applied Biosystems). The primer sequences, reported previously (Oslowski and Urano, 2011), are as follows: XBP1s,

50-CTGAGTCCGAATCAGGTGCAG-30 (forward) and 50-GTCCATGGGAAGATGTTCTGG-30 (reverse); XBP1, 50- TGGCCGGGTC

TGCTGAGTCCG (forward) and 50-GTCCATGGGAAGATGTTCTG-30 (reverse); HSPA5, 50-TTCAGCCAATTATCAGCAAACTCT-30

(forward) and 50-TTTTCTGATGTATCCTCTTCACCAGT-30 (reverse); DDIT3, 50-CATACACCACCACACCTGAAAG-30 (forward) and

50- CCGTTTCCTAGTTCTTCCTTGC�30 (reverse); EDEM1, 50-CCTCAATGTGGCCAGAACTT-30 (forward) and 50- CAGGACCTTTG

CACAGGAAT-30 (reverse); PERK, 50- GAAATCTCTGACTACATACGGAC-30 (reverse) and 50-ACACTGAAATTCCACTTCTCAC-30

(forward); HPRT, 50-TTATGGACAGGACTGAAAGAC-30 (forward) and 50- GCTTTAATGTAATCCAGCAGGT�30 (reverse). Expression
of each ER stress gene was normalized to HPRT.

Electron Microscopy
Transmission electron microscopy of mouse splenic plasma cell subsets was performed by the Molecular Microbiology Imaging Fa-

cility at Washington University. For ultrastructural analysis, 3–5 3 104 sorted cells were fixed in 2% paraformaldehyde/2.5% glutar-

aldehyde (Ted Pella, Redding, CA, USA) in 100 mM cacodylate buffer (pH 7.2) for 1 hr at room temperature. Samples were washed in

cacodylate buffer and postfixed in 1% osmium tetroxide (Polysciences, Warrington, PA, USA) for 1 hr. Samples were then rinsed

extensively in dH20 prior to en bloc staining with 1% aqueous uranyl acetate (Ted Pella) for 1 hr. Following several rinses in dH20,

samples were dehydrated in a graded series of ethanol and embedded in Eponate 12 resin (Ted Pella). Sections of 95 nm were

cut with a Leica Ultracut UCT7 ultramicrotome (Leica Microsystems, Bannockburn, IL, USA), stained with uranyl acetate and lead

citrate, and viewed on a JEOL 1200 EX transmission electron microscope (JEOL USA, Peabody, MA, USA) equipped with an

AMT 8 megapixel digital camera and AMT Image Capture Engine V602 software (Advanced Microscopy Techniques, Woburn,

MA, USA). ER lumenal width analysis was performed using ImageJ software, and scored blinded to the cellular subset.

In Vivo Ribopuromycylation
Wild-type IgHa mice were injected with 1 mg of puromycin (EMD Millipore) intraperitoneally and euthanized 15 min later. Following

fixation and permeabilization as previously described (Seedhom et al., 2016), puromycin incorporation was detected using a mono-

clonal antibody (clone 2A4 from the Developmental Studies Hybridoma Bank at the University of Iowa) followed by a biotin mouse

anti-mouse IgG2a[b] (clone: 5.7 from BD Pharmingen) and finally BV605 streptavidin (BD Horizon).

CaspGLOW Assay
Caspase 12 activation was measured using the CaspGLOW staining kit (Biovision). Sorted cells were spun down and cultured in

custom physiological media supplemented with 1% Pen/Strep, 5 mM glucose, 500 mM glutamine, and 10% FBS and 1 mL of

FITC-ATAD-FMK (from kit) for 1 hr in hypoxic conditions (5% O2, 5% CO2, 37�C). Cells were analyzed by flow cytometry and

FITC-positive cells indicate active caspase-12.

Immunoglobulin Repertoire Analysis
For these analyses, we sorted all recoverable plasma cells from spleen and bone marrow of femurs, tibiae, humerus, and pelvis

bones, generating approximately 30,000 cells of each subset. Sorted cells were lysed and RNA made using the NucleoSpin RNA

XS kit (Macherey-Nagel) per manufacturer’s instruction. cDNA was generated using Superscript III First-Strand Synthesis System

for FT (Thermo Fisher) with oligo dT per manufacturer’s instructions. PCR primers as previously reported were modified for MiSeq

analysis as described below (Menzel et al., 2014; Tiller et al., 2009). IgM immunoglobulin transcripts were amplified with first round

PCR with the following primers: msVHEstdseq1 50-TCTTTCCCTACACGATCTGGGAATTCGAGGTGCAGCTGCAGGAGTCTGG-30

and common mu stdseq2 50-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGGGGAAGACATTTGGGAAGGAC-30. PCR

products were cleaned using gel/PCR DNA fragments extraction kit (IBI Scientific). PCR products were then used as templates

for a second round of amplification with the following primers: P5 forward Stdseq 50-AATGATACGGCGACCACCGAGATCTACAC

TCTTTCCCTACACGACGC-30 and P7 reverse Stdseq index 50CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAG

TTCAGACGTGTGTG-30 where N represents a unique combination for barcoding purposes. For IgG repertoire analysis, cDNA

was first amplified using the following primers: msVHEstdseq1 50-TCTTTCCCTACACGATCTGGGAATTCGAGGTGCAGCTGCAG

GAGTCTGG-30 and a combination of

Cg1 primer 50- GGAAGGTGTGCACCGCTGGAC-30,
Cg2c primer 50-GGAAGGTGCACACTGGAC-30,
Cg2b primer 50- GGAAGGTGCACACTGCTGGAC-30,
Cg3 primer 50-AGACTGTGCGCACACCGCTGGAC-30.

Cell Reports 24, 2479–2492.e1–e6, August 28, 2018 e5



This was followed by a second round of PCR with: msVHEstdseq1 50-TCTTTCCCTACACGATCTGGGAATTCGAGGTGCAGCTG

CAGGAGTCTGG-30 and a common Cg primer: 50- GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCAAGGTGGATAGAGAG

CATCGATGGGG-30. This was followed by a final amplification cycle with P5 forward Stdseq and P7 reverse Stdseq index. Samples

were then pooled, gel purified, and then sequenced using the Illumina Miseq 2 3 250 platform with the following primers: Stdseq1:

50-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-30; Stdseq2: 50-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-30; and

Index seq: 50-GATCGGAAGAGCACACGTCTGAACTCCAGTCAC-30. Repertoire information was extracted from fastq files using

Mixcr (Bolotin et al., 2015) and displayed using Clonoplot (Fähnrich et al., 2017). Approximately 150,000 reads were obtained for

each sample, which when corrected for isotype usage corresponds to �7–153 coverage. Given that none of the subsets displayed

more than 4,000 distinct CDR3 regions, the data approach sequencing saturation.

RNA-Seq
RNA was prepared from approximately 30,000 plasma cells as described above. Human plasma cell RNA-seq data were obtained

from our previous studies (Jash et al., 2016; Lam et al., 2016). Sequencing libraries were generated using a Clontech Smart-Seq kit

and Nextera DNA library prep kit (Illumina). Single end 50bp reads were acquired using an Illumina HiSeq 2500. Reads were mapped

using Salmon (Patro et al., 2017), and differential gene expression analysis was performed using DESeq2 (Love et al., 2014). Refer-

ence transcriptomes and annotation files that include immunoglobulin variable and constant region geneswere downloaded from the

Gencode Project: (ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_mouse/release_M16/gencode.vM16.pc_transcripts.fa.gz). Inter-

section analysis was performed using Microsoft Access, and Venn Diagrams were generated using https://www.meta-chart.com/

venn#/data. Heatmaps were generated using http://www.heatmapper.ca/.

Single-Cell RNA-Seq
Approximately 5000 LY6G- CD11c- plasma cells of each subset were double-sorted and prepared for RNA-sequencing using a

Chromium Single Cell 30 Library & Gel Bead Kit and a Single Cell Controller from 10x Genomics according to manufacturer’s instruc-

tions. Sequencing libraries were prepared using Illumina Nextera kits, and each sample was sequenced in its own Illumina HiSeq

2500 lane. Sequencing files were aggregated, normalized, and processed using the Cell Ranger program (10x Genomics) and visu-

alized using Loupe Browser (10x Genomics). Minimum read cutoffs to focus the analysis on high-quality single cells were left at

default settings. Clusters were automatically defined by a graph-based method. Immunoglobulin isotypes and subset-specific

expression of neutrophil degranulation genes were visualized using SeqGeq (FlowJo).

13C Tracing Experiments
Human bone marrow plasma cells were purified using CD138 beads as previously described (Lam et al., 2016). Approximately 2 3

106 cells were cultured in 2ml of physiological media containing either 5mM uniformly labeled 13C glucose or 500 mM uniformly

labeled glutamine for 24 hours. Cells were harvested and extracted as previously described (Yao et al., 2016). Samples were sepa-

rated on a Luna aminopropyl column (3 mm, 150mm3 1.0 mm I.D., Phenomenex) coupled to an Agilent 1260 capillary HPLC system.

The Luna column was used in negative mode with the following buffers and linear gradient: A = 95% water, 5% acetonitrile (ACN),

10 mM ammonium hydroxide, 10 mM ammonium acetate; B = 95% ACN, 5% water; 100% to 0% B from 0-45 min and 0% B from

45-50min; flow rate 50 mL/min.Mass spectrometry detection was carried out on an Agilent 6540Q-TOF coupledwith ESI source. The

identity of each metabolite was confirmed by comparing retention times and tandem MS data with standard compounds. The iso-

topologue distributions were corrected for natural abundance and isotope impurity.

QUANTIFICATION AND STATISTICAL ANALYSIS

Student’s t tests, 1-way ANOVAs with post hoc Tukey’s multiple comparison tests, and 2-way ANOVAs with post hoc Sidak’s mul-

tiple comparison tests were performed using Prism software (Graphpad). Figure legends specify the test used, criteria for statistical

significance, and experimental replicates. Figures and/or legends specify the number of technical and biological replicates per

experiment. Adjusted p values and fold changes for RNA-seq were calculated using DESeq2 (Love et al., 2014). Significant genes

in single cell RNA-seq experiments were identified using Loupe Browser, which applied a Benjamini-Hochberg correction for multiple

comparisons to generate adjusted p values.

DATA AND SOFTWARE AVAILABILITY

The accession number for the RNA-seq data reported in this paper is NCBI GEO: GSE115860.
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