18 research outputs found

    Aspects of the ecology and management of the Soupfin shark (Galeorhinus galeus) in South Africa

    Get PDF
    Global trends in teleost fisheries indicate significant population declines. Thus, alternative fisheries are being developed to meet the growing economic and nutritional demands of the expanding human population. Recently, it has been established that elasmobranch fisheries may fulfill these demands. As many elasmobranchs possess life-history characteristics that make them particularly vulnerable to overfishing, it is imperative to develop management strategies prior to the inception of these fisheries to ensure sustainable resource utilisation. In South Africa, elasmobranchs have been commercially exploited since the 1930s. Although generally considered an under-exploited resource, the potential for growth within these fisheries has been recognized. In 2005, the commercial shark fishery will undergo a transition from medium to long-term rights allocations. This represents an ideal opportunity for scientists and managers to develop precautionary species-specific management plans for commercially exploitable elasmobranch species. The soupfin shark (Galeorhinus galeus) is one of the principal target species in South Africa’s shark fisheries. Given its inherent susceptibility to overexploitation, G. galeus was selected as a management priority by South Africa’s regional fisheries organisation. The purpose of this study was to examine and describe the stock status of G. galeus in South Africa, and to develop a precautionary fishery management plan to ensure the sustainability of this resource. Age, growth, and mortality calculations for G. galeus were made from research survey data collected between 1996 and 1999. A small sample size precluded independent analyses of females. The maximum recorded age for G. galeus was 33 years. Estimated von Bertalanffy growth parameters from observed length-at-age for males and combined sexes were: L∞ 1542.8 mm TL, K 0.21 year⁻¹ , t₀ -2.79 year⁻¹ and L∞ 1560.3 mm TL, K 0.19 year¹, t₀ -3.03 year⁻¹, respectively. The age-at-50% maturity was determined to be 6 years, corresponding to 1011 mm TL for males and 1100 mm TL for combined sexes. Natural mortality was calculated as 0.126 yr⁻¹. The rate of instantaneous total mortality was calculated as 0.27 yr⁻¹. Catch trend analysis showed that catches and CPUE of G. galeus are increasing in the demersal longline fishery, and decreasing in the handline fishery. Decreasing catches and CPUE were observed in fishery-independent research survey data. The status of the soupfin shark stock was modelled using per-recruit analysis. The SB/R model indicated the soupfin shark is being optimally exploited and spawner biomass is at 43% of preexploitation levels. Current fishing levels ( F = 0.14 yr⁻¹) approximate the Fsb₄₀ level (F = 0.17 yr¹); thus, an increase in fishing pressure may lead to stock collapse. It was determined that the current age-at-capture (7.9 years) should be increased to 10 years, or 1420 mm TL, to maximize yield and minimize the possibility of recruitment failure. The results of this study indicate a need for immediate scientific and management intervention in South Africa’s soupfin shark fishery. An assessment report and fishery management plan for G. galeus was compiled, and several management options were proposed. These include the implementation of licence and size restrictions, as well as seasonal/area closures. The potential for an experimental gillnet fishery should be investigated

    Population genetics of Southern Hemisphere tope shark (<i>Galeorhinus galeus</i>) : Intercontinental divergence and constrained gene flow at different geographical scales

    Get PDF
    The tope shark (Galeorhinus galeus Linnaeus, 1758) is a temperate, coastal hound shark found in the Atlantic and Indo-Pacific oceans. In this study, the population structure of Galeorhinus galeus was determined across the entire Southern Hemisphere, where the species is heavily targeted by commercial fisheries, as well as locally, along the South African coastline. Analysis was conducted on a total of 185 samples using 19 microsatellite markers and a 671 bp fragment of the NADH dehydrogenase subunit 2 (ND2) gene. Across the Southern Hemisphere, three geographically distinct clades were recovered, including one from South America (Argentina, Chile), one from Africa (all the South African collections) and an Australia-New Zealand clade. Nuclear data revealed significant population subdivisions (FST = 0.192 to 0.376, p<0.05) indicating limited gene flow for tope sharks across ocean basins. Marked population connectivity was however evident across the Indian Ocean based on Bayesian clustering analysis. More locally in South Africa, F-statistics and multivariate analysis supported moderate to high gene flow across the Atlantic/ Indian Ocean boundary (FST = 0.035 to 0.044, p<0.05), with exception of samples from Struisbaai and Port Elizabeth which differed significantly from the rest. Discriminant and Bayesian clustering analysis indicated admixture in all sampling populations, decreasing from west to east, corroborating possible restriction to gene flow across regional oceanographic barriers. Mitochondrial sequence data recovered seven haplotypes (h = 0.216, π = 0.001) for South Africa, with one major haplotype shared by 87% of the individuals and at least one private haplotype for each sampling location except Port Elizabeth. As with many other coastal shark species with cosmopolitan distribution, this study confirms the lack of both historical dispersal and inter-oceanic gene flow while also implicating contemporary factors such as oceanic currents and thermal fronts to drive local genetic structure of G. galeus on a smaller spatial scale.Facultad de Ciencias Naturales y Muse

    Using baited remote underwater videos (BRUVs) to characterize chondrichthyan communities in a global biodiversity hotspot.

    No full text
    Threatened chondrichthyan diversity is high in developing countries where scarce resources, limited data, and minimal stakeholder support often render conservation efforts challenging. As such, data on many species, including many evolutionarily distinct endemics, is poor in these countries and their conservation status and habitat needs remain uncertain. Here, we used baited remote underwater videos (BRUVs; n = 419) conducted at 167 sites over two years to assess the frequency of occurrence (FO), relative abundance, diversity, and structure of chondrichthyan assemblages in one of the world's chondrichthyan biodiversity and endemism hotspots, South Africa. We compared chondrichthyan assemblages across three habitat types, and between unprotected and protected areas (a small marine protected area [MPA] and a larger, seasonal whale sanctuary). Although in total we observed 18 chondrichthyan species (11 families), over half of all observations were of just two species from the same family of mesopredatory endemic catsharks; only 8.8% were larger shark species. These mesopredatory species do not appear to be threatened, but some skates and larger shark species, including some endemics, were much rarer. Overall chondrichthyan FO was high (81% of all BRUVs); FO was higher in kelp (100% of BRUVS) and reef (93%) sites than at sites in sandy habitat (63%), which had a distinct chondrichthyan community. Independent of habitat, the chondrichthyan community did not relate strongly to protection. Because sites with kelp and reef habitat were rare in the whale sanctuary, this protected area had a lower chondrichthyan FO (67% of BRUVs) than either unprotected sites (81%) or those in the small MPA (98%), as well as having lower chondrichthyan relative abundance and species richness. Our study provides evidence of the importance of distinct habitat types to different chondrichthyan species, and suggests that even small MPAs can protect critical habitats, such that they may provide safe refuge for endemic species as anthropogenic pressures increase

    The Green Wave: Reviewing the Environmental Impacts of the Invasive European Green Crab (Carcinus maenas) and Potential Management Approaches

    No full text
    The European green crab (Carcinus maenas), native to northwestern Europe and Africa, is among the top 100 most damaging invasive species globally. In some regions, including the Atlantic coast of North America, C. maenas has caused long-term degradation of eelgrass habitats and bivalve, crab, and finfish populations, while areas are near the beginning of the invasion cycle. Due to high persistence and reproductive potential of C. maenas populations, most local and regional mitigation efforts no longer strive for extirpation and instead focus on population control. Long-term monitoring and rapid response protocols can facilitate early detection of introductions that is critical to inform management decisions related to green crab control or extirpation. Once C. maenas are detected, local area managers will need to decide on management actions, including whether and what green crab control measures will be implemented, if local invasion might be prevented or extirpated, and if population reduction to achieve functional eradication is achievable. Due to the immense operational demands likely required to extirpate C. maenas populations, combined with limited resources for monitoring and removal, it is unlikely that any single government, conservation and/or academic organization would be positioned to adequately control or extirpate populations in local areas, highlighting the importance of collaborative efforts. Community-based monitoring, and emerging methods such as environmental DNA (eDNA), may help expand the spatial and temporal extent of monitoring, facilitating early detection and removal of C. maenas. While several C. maenas removal programs have succeeded in reducing their populations, to our knowledge, no program has yet successfully extirpated the invader; and the cost of any such program would likely be immense and unsustainable over the long-term. An alternative approach is functional eradication, whereby C. maenas populations are reduced below threshold levels such that ecosystem impacts are minimized. Less funding and effort would likely be required to achieve and maintain functional eradication compared to extirpation. In either case, continual control efforts will be required as C. maenas populations can quickly increase from low densities and larval re-introductions.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Local adaptation with gene flow in a highly dispersive shark

    No full text
    Abstract Adaptive divergence in response to environmental clines are expected to be common in species occupying heterogeneous environments. Despite numerous advances in techniques appropriate for non‐model species, gene–environment association studies in elasmobranchs are still scarce. The bronze whaler or copper shark (Carcharhinus brachyurus) is a large coastal shark with a wide distribution and one of the most exploited elasmobranchs in southern Africa. Here, we assessed the distribution of neutral and adaptive genomic diversity in C. brachyurus across a highly heterogeneous environment in southern Africa based on genome‐wide SNPs obtained through a restriction site‐associated DNA method (3RAD). A combination of differentiation‐based genome‐scan (outflank) and genotype–environment analyses (redundancy analysis, latent factor mixed models) identified a total of 234 differentiation‐based outlier and candidate SNPs associated with bioclimatic variables. Analysis of 26,299 putatively neutral SNPs revealed moderate and evenly distributed levels of genomic diversity across sites from the east coast of South Africa to Angola. Multivariate and clustering analyses demonstrated a high degree of gene flow with no significant population structuring among or within ocean basins. In contrast, the putatively adaptive SNPs demonstrated the presence of two clusters and deep divergence between Angola and all other individuals from Namibia and South Africa. These results provide evidence for adaptive divergence in response to a heterogeneous seascape in a large, mobile shark despite high levels of gene flow. These results are expected to inform management strategies and policy at the national and regional level for conservation of C. brachyurus populations

    Population genetics of Southern Hemisphere tope shark (<i>Galeorhinus galeus</i>): Intercontinental divergence and constrained gene flow at different geographical scales

    Get PDF
    <div><p>The tope shark (<i>Galeorhinus galeus</i> Linnaeus, 1758) is a temperate, coastal hound shark found in the Atlantic and Indo-Pacific oceans. In this study, the population structure of <i>Galeorhinus galeus</i> was determined across the entire Southern Hemisphere, where the species is heavily targeted by commercial fisheries, as well as locally, along the South African coastline. Analysis was conducted on a total of 185 samples using 19 microsatellite markers and a 671 bp fragment of the NADH dehydrogenase subunit 2 (<i>ND2</i>) gene. Across the Southern Hemisphere, three geographically distinct clades were recovered, including one from South America (Argentina, Chile), one from Africa (all the South African collections) and an Australia-New Zealand clade. Nuclear data revealed significant population subdivisions (F<sub>ST</sub> = 0.192 to 0.376, p<0.05) indicating limited gene flow for tope sharks across ocean basins. Marked population connectivity was however evident across the Indian Ocean based on Bayesian clustering analysis. More locally in South Africa, F-statistics and multivariate analysis supported moderate to high gene flow across the Atlantic/Indian Ocean boundary (F<sub>ST</sub> = 0.035 to 0.044, p<0.05), with exception of samples from Struisbaai and Port Elizabeth which differed significantly from the rest. Discriminant and Bayesian clustering analysis indicated admixture in all sampling populations, decreasing from west to east, corroborating possible restriction to gene flow across regional oceanographic barriers. Mitochondrial sequence data recovered seven haplotypes (<i>h</i> = 0.216, π = 0.001) for South Africa, with one major haplotype shared by 87% of the individuals and at least one private haplotype for each sampling location except Port Elizabeth. As with many other coastal shark species with cosmopolitan distribution, this study confirms the lack of both historical dispersal and inter-oceanic gene flow while also implicating contemporary factors such as oceanic currents and thermal fronts to drive local genetic structure of <i>G</i>. <i>galeus</i> on a smaller spatial scale.</p></div

    Sampling locations of <i>Galeorhinus galeus</i>.

    No full text
    <p>Map showing the major biogeographic barriers and oceanic currents across the Southern Hemisphere and South Africa. The main biogeographic barriers indicated by the dashed lines are the Eastern South Pacific Barrier (EPB) and the Mid-Atlantic Barrier (MAB). Sampling codes: Chile (CHI), Argentina (ARG), South Africa (SA), Australia (AUS), New Zealand (NZ); Robben Island (RI), False Bay (FB), Kleinmond (K), Agulhas Bank (AB), Struisbaai (SB) and Port Elizabeth (PE).</p

    Global and local haplotype genealogy of <i>Galeorhinus galeus</i> based on a maximum likelihood tree of <i>ND2</i>.

    No full text
    <p>Circles represent the haplotypes with area being equivalent to frequency. Each line indicates one mutational step between haplotypes and small dark blue circles indicate hypothetical missing haplotypes.</p
    corecore