57 research outputs found

    Potential for rabies control through dog vaccination in wildlife-abundant communities of Tanzania

    Get PDF
    Canine vaccination has been successful in controlling rabies in diverse settings worldwide. However, concerns remain that coverage levels which have previously been sufficient might be insufficient in systems where transmission occurs both between and within populations of domestic dogs and other carnivores. To evaluate the effectiveness of vaccination targeted at domestic dogs when wildlife also contributes to transmission, we applied a next-generation matrix model based on contract tracing data from the Ngorongoro and Serengeti Districts in northwest Tanzania. We calculated corresponding values of R0, and determined, for policy purposes, the probabilities that various annual vaccination targets would control the disease, taking into account the empirical uncertainty in our field data. We found that transition rate estimates and corresponding probabilities of vaccination-based control indicate that rabies transmission in this region is driven by transmission within domestic dogs. Different patterns of rabies transmission between the two districts exist, with wildlife playing a more important part in Ngorongoro and leading to higher recommended coverage levels in that district. Nonetheless, our findings indicate that an annual dog vaccination campaign achieving the WHO-recommended target of 70% will control rabies in both districts with a high level of certainty. Our results support the feasibility of controlling rabies in Tanzania through dog vaccination

    Cost-effective proactive testing strategies during COVID-19 mass vaccination: A modelling study

    Get PDF
    Background: As SARS-CoV-2 vaccines are administered worldwide, the COVID-19 pandemic continues to exact significant human and economic costs. Mass testing of unvaccinated individuals followed by isolation of positive cases can substantially mitigate risks and be tailored to local epidemiological conditions to ensure cost effectiveness. Methods: Using a multi-scale model that incorporates population-level SARS-CoV-2 transmission and individual-level viral load kinetics, we identify the optimal frequency of proactive SARS-CoV-2 testing, depending on the local transmission rate and proportion immunized. Findings: Assuming a willingness-to-pay of US100,000peravertedyearoflifelost(YLL)andapriceof100,000 per averted year of life lost (YLL) and a price of 10 per test, the optimal strategy under a rapid transmission scenario (Re ~ 2.5) is daily testing until one third of the population is immunized and then weekly testing until half the population is immunized, combined with a 10-day isolation period of positive cases and their households. Under a low transmission scenario (Re ~ 1.2), the optimal sequence is weekly testing until the population reaches 10% partial immunity, followed by monthly testing until 20% partial immunity, and no testing thereafter. Interpretation: Mass proactive testing and case isolation is a cost effective strategy for mitigating the COVID-19 pandemic in the initial stages of the global SARS-CoV-2 vaccination campaign and in response to resurgences of vaccine-evasive variants.US National Institutes of Health, US Centers for Disease Control and Prevention, HK Innovation and Technology Commission, China National Natural Science Foundation, European Research Council, and EPSRC Impact Acceleration Grant.Integrative Biolog

    Cost-effectiveness of next-generation vaccines: The case of pertussis.

    Get PDF
    Despite steady vaccination coverage rates, pertussis incidence in the United States has continued to rise. This public health challenge has motivated calls for the development of a new vaccine with greater efficacy and duration of protection. Any next-generation vaccine would likely come at a higher cost, and must provide sufficient health benefits beyond those provided by the current vaccine in order to be deemed cost-effective. Using an age-structured transmission model of pertussis, we quantified the health and economic benefits of a next-generation vaccine that would enhance either the efficacy or duration of protection of the childhood series, the duration of the adult booster, or a combination. We developed a metric, the maximum cost-effective price increase (MCPI), to compare the potential value of such improvements. The MCPI estimates the per-dose price increase that would maintain the cost-effectiveness of pertussis vaccination. We evaluated the MCPI across a range of potential single and combined improvements to the pertussis vaccine. As an upper bound, we found that a next-generation vaccine which could achieve perfect efficacy for the childhood series would permit an MCPI of 18perdose(9518 per dose (95% CI: 12-31).Pertussisvaccineimprovementsthatextendthedurationofprotectiontoanaverageof75yearswouldallowforanMCPIof31). Pertussis vaccine improvements that extend the duration of protection to an average of 75 years would allow for an MCPI of 22 per dose for the childhood series (CI: 1010-33) or 12fortheadultbooster(CI:12 for the adult booster (CI: 4-18).Despitetheshortdurationoftheadultbooster,improvementstothechildhoodseriescouldbemorevaluablethanimprovementstotheadultbooster.Combiningimprovementsinbothefficacyandduration,achildhoodserieswithperfectefficacyandaveragedurationof75yearswouldpermitanMCPIof18). Despite the short duration of the adult booster, improvements to the childhood series could be more valuable than improvements to the adult booster. Combining improvements in both efficacy and duration, a childhood series with perfect efficacy and average duration of 75 years would permit an MCPI of 39 per dose, the highest of any scenario evaluated. Our results highlight the utility of the MCPI metric in evaluating potential vaccines or other interventions when prices are unknown

    Impact of One-Health framework on vaccination cost-effectiveness : a case study of rabies in Ethiopia

    Get PDF
    Livestock losses due to rabies and health and the corresponding benefits of controlling the disease are not often considered when the cost-effectiveness of rabies control is evaluated. In this research, assessed the benefits of applying a One Health perspective that includes these losses to the case of canine rabies vaccination in Ethiopia. We constructed a dynamic epidemiological model of rabies transmission. The model was fit to district-specific data on human rabies exposures and canine demography for two districts with distinct agro-ecologies. The epidemiological model was coupled with human and livestock economic outcomes to predict the health and economic impacts under a range of vaccination scenarios. The model indicates that human exposures, human deaths, and rabies-related livestock losses would decrease monotonically with increasing vaccination coverage. In the rural district, all vaccination scenarios were found to be cost-saving compared to the status quo of no vaccination, as more money could be saved by preventing livestock losses than would be required to fund the vaccination campaigns. Vaccination coverages of 70% and 80% were identified as most likely to provide the greatest net health benefits at the WHO cost-effectiveness threshold over a period of 5 years, in urban and rural districts respectively. Shorter time frames led to recommendations for higher coverage in both districts, as did even a minor threat of rabies re-introduction. Exclusion of rabies-related livestock losses reduced the optimal vaccination coverage for the rural district to 50%. This study demonstrated the importance of including all economic consequences of zoonotic disease into control decisions. Analyses that include cattle and other rabies-susceptible livestock are likely better suited to many rural communities in Africa wishing to maximize the benefits of canine vaccination

    Model-based assessment of public health impact and cost-effectiveness of dengue vaccination following screening for prior exposure.

    Get PDF
    The tetravalent dengue vaccine CYD-TDV (Dengvaxia) is the first licensed vaccine against dengue, but recent findings indicate an elevated risk of severe disease among vaccinees without prior dengue virus (DENV) exposure. The World Health Organization currently recommends CYD-TDV only for individuals with serological confirmation of past DENV exposure. Our objective was to evaluate the potential health impact and cost-effectiveness of vaccination following serological screening. To do so, we used an agent-based model to simulate DENV transmission with and without vaccination over a 10-year timeframe. Across a range of values for the proportion of vaccinees with prior DENV exposure, we projected the proportion of symptomatic and hospitalized cases averted as a function of the sensitivity and specificity of serological screening. Scenarios about the cost-effectiveness of screening and vaccination were chosen to be representative of Brazil and the Philippines. We found that public health impact depended primarily on sensitivity in high-transmission settings and on specificity in low-transmission settings. Cost-effectiveness could be achievable from the perspective of a public payer provided that sensitivity and the value of a disability-adjusted life-year were both high, but only in high-transmission settings. Requirements for reducing relative risk and achieving cost-effectiveness from an individual perspective were more restricted, due to the fact that those who test negative pay for screening but receive no benefit. Our results predict that cost-effectiveness could be achieved only in high-transmission areas of dengue-endemic countries with a relatively high per capita GDP, such as Panamá (13,680 USD), Brazil (8,649 USD), México (8,201 USD), or Thailand (5,807 USD). In conclusion, vaccination with CYD-TDV following serological screening could have a positive impact in some high-transmission settings, provided that screening is highly specific (to minimize individual harm), at least moderately sensitive (to maximize population benefit), and sufficiently inexpensive (depending on the setting)

    Segmental Duplication Implicated in the Genesis of Inversion 2Rj of Anopheles gambiae

    Get PDF
    The malaria vector Anopheles gambiae maintains high levels of inversion polymorphism that facilitate its exploitation of diverse ecological settings across tropical Africa. Molecular characterization of inversion breakpoints is a first step toward understanding the processes that generate and maintain inversions. Here we focused on inversion 2Rj because of its association with the assortatively mating Bamako chromosomal form of An. gambiae, whose distinctive breeding sites are rock pools beside the Niger River in Mali and Guinea. Sequence and computational analysis of 2Rj revealed the same 14.6 kb insertion between both breakpoints, which occurred near but not within predicted genes. Each insertion consists of 5.3 kb terminal inverted repeat arms separated by a 4 kb spacer. The insertions lack coding capacity, and are comprised of degraded remnants of repetitive sequences including class I and II transposable elements. Because of their large size and patchwork composition, and as no other instances of these insertions were identified in the An. gambiae genome, they do not appear to be transposable elements. The 14.6 kb modules inserted at both 2Rj breakpoint junctions represent low copy repeats (LCRs, also called segmental duplications) that are strongly implicated in the recent (∼0.4Ne generations) origin of 2Rj. The LCRs contribute to further genome instability, as demonstrated by an imprecise excision event at the proximal breakpoint of 2Rj in field isolates

    One Health Approach" to Rabies Control

    No full text
    Non UBCUnreviewedAuthor affiliation: Yale UniversityPostdoctora
    corecore