84 research outputs found

    Activation of chloride transport in CF airway epithelial cell lines and primary CF nasal epithelial cells by S-nitrosoglutathione

    Get PDF
    BACKGROUND: It has been suggested that low μM concentrations of S-nitrosoglutathione (GSNO), an endogenous bronchodilator, may promote maturation of the defective cystic fibrosis (CF) transmembrane conductance regulator (CFTR). Because nitric oxide (NO) and GSNO levels appear to be low in the CF airway, there is an interest in the possibility that GSNO replacement could be of therapeutic benefit in CF. METHODS: The effect of GSNO on chloride (Cl(-)) transport was investigated in primary nasal epithelial cells obtained from CF patients homozygous for the delF508 mutation, as well as in two CF cell lines (CFBE and CFSME), using both a fluorescent Cl(- )indicator and X-ray microanalysis. Maturation of delF508 CFTR was determined by immunoblotting. RESULTS: Treatment with 60 μM GSNO for 4 hours increased cAMP-induced chloride efflux in nasal epithelial cells from 18 out of 21 CF patients, but did not significantly affect Cl(- )efflux in cells from healthy controls. This Cl(- )efflux was confirmed by measurements with a fluorescent Cl(- )indicator in the CFBE and CFSME cell lines. The effect of GSNO on Cl(- )efflux in CFBE cells could be inhibited both by a specific thiazolidinone CFTR inhibitor (CFTR(inh)-172) and by 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonic acid (H(2)DIDS). X-ray microanalysis showed that, following 4 hours incubation with 60 μM GSNO, cAMP agonists caused a decrease in the cellular Cl(- )concentration in CFBE cells, corresponding to Cl(- )efflux. GSNO exposure resulted in an increase in the protein expression and maturation, as shown by immunoblot analysis. GSNO did not increase the cytosolic Ca(2+ )concentration in cultured airway epithelial cells. CONCLUSION: Previous studies have suggested that treatment with GSNO promotes maturation of delF508-CFTR, consistent with our results in this study. Here we show that GSNO increases chloride efflux, both in the two CF cell lines and in primary nasal epithelial cells from delF508-CF patients. This effect is at least in part mediated by CFTR. GSNO may be a candidate for pharmacological treatment of the defective chloride transport in CF epithelial cells

    The Primary Folding Defect and Rescue of ΔF508 CFTR Emerge during Translation of the Mutant Domain

    Get PDF
    In the vast majority of cystic fibrosis (CF) patients, deletion of residue F508 from CFTR is the cause of disease. F508 resides in the first nucleotide binding domain (NBD1) and its absence leads to CFTR misfolding and degradation. We show here that the primary folding defect arises during synthesis, as soon as NBD1 is translated. Introduction of either the I539T or G550E suppressor mutation in NBD1 partially rescues ΔF508 CFTR to the cell surface, but only I539T repaired ΔF508 NBD1. We demonstrated rescue of folding and stability of NBD1 from full-length ΔF508 CFTR expressed in cells to isolated purified domain. The co-translational rescue of ΔF508 NBD1 misfolding in CFTR by I539T advocates this domain as the most important drug target for cystic fibrosis

    Hsc70 Focus Formation at the Periphery of HSV-1 Transcription Sites Requires ICP27

    Get PDF
    The cellular chaperone protein Hsc70, along with components of the 26S proteasome and ubiquitin-conjugated proteins have been shown to be sequestered in discrete foci in the nuclei of herpes simplex virus 1 (HSV-1) infected cells. We recently reported that cellular RNA polymerase II (RNAP II) undergoes proteasomal degradation during robust HSV-1 transcription, and that the immediate early protein ICP27 interacts with the C-terminal domain and is involved in the recruitment of RNAP II to viral transcription/replication compartments.Here we show that ICP27 also interacts with Hsc70, and is required for the formation of Hsc70 nuclear foci. During infection with ICP27 mutants that are unable to recruit RNAP II to viral replication sites, viral transcript levels were greatly reduced, viral replication compartments were poorly formed and Hsc70 focus formation was curtailed. Further, a dominant negative Hsc70 mutant that cannot hydrolyze ATP, interfered with RNAP II degradation during HSV-1 infection, and an increase in ubiquitinated forms of RNAP II was observed. There was also a decrease in virus yields, indicating that proteasomal degradation of stalled RNAP II complexes during robust HSV-1 transcription and replication benefits viral gene expression.We propose that one function of the Hsc70 nuclear foci may be to serve to facilitate the process of clearing stalled RNAP II complexes from viral genomes during times of highly active transcription

    Germline selection shapes human mitochondrial DNA diversity.

    Get PDF
    Approximately 2.4% of the human mitochondrial DNA (mtDNA) genome exhibits common homoplasmic genetic variation. We analyzed 12,975 whole-genome sequences to show that 45.1% of individuals from 1526 mother-offspring pairs harbor a mixed population of mtDNA (heteroplasmy), but the propensity for maternal transmission differs across the mitochondrial genome. Over one generation, we observed selection both for and against variants in specific genomic regions; known variants were more likely to be transmitted than previously unknown variants. However, new heteroplasmies were more likely to match the nuclear genetic ancestry as opposed to the ancestry of the mitochondrial genome on which the mutations occurred, validating our findings in 40,325 individuals. Thus, human mtDNA at the population level is shaped by selective forces within the female germ line under nuclear genetic control, which ensures consistency between the two independent genetic lineages.NIHR, Wellcome Trust, MRC, Genomics Englan

    Publisher Correction: Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data.

    Get PDF
    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper

    Frühphasen menschlicher Leukämien

    No full text

    Reconstitution of CHIP E3 Ubiquitin Ligase Activity

    No full text
    • …
    corecore