67 research outputs found

    Spatial analysis of Fire Characterization along with various gradients of Season, Administrative units, Vegetation, Socio economy, Topography and Future climate change: A case study of Orissa state of India

    Get PDF
    Fire events are an increasing phenomenon these days due to the climate change. It is responsible for forest degradation and habitat destruction. Changes in ecosystem processes are also noticed. The livelihood of tribal population is also threatened. Geospatial technologies along with Remotely Sensed data have enormous capability to evaluate the various diversified datasets and to examine their relationship. In this analysis, we have utilized the long term fire events at district level for the Orissa state ofIndiaand forest fire hotspots were identified. The fire pattern was analyzed with respect to the existing vegetation types, tribal population and topography to understand its association/relationship. Furthermore, it was evaluated with future climate change data for better comprehension of future forest fire scenario. The study reveals that Kandhamal, Raygada and Kalahandi district have highest fire frequency representing around 38% of the total Orissa fire events. The vegetation type “Tropical mixed deciduous and dry deciduous forests” and “Tropical lowland forests, broadleaved, evergreen, <1000m” occupy the geographical area roughly 43% whereas they retain fire percent equivalent to 70%. Approximately 70% of forest fire occurred in the area where tribal population was high to very high. The 60% of forest fire occurred where elevation was greater than500 meterswhereas 48% of fire occurred on moderate slopes.            Our observation of future climate change scenario for the year 2030 reflects the increase in summer temperature and irregular rainfall pattern. Therefore, forest fire intensity will be more in future in the state of Orissa whereas it’s intensity will be more severe in few of the district such as Kandhamal, Raygada, Kalahandi and Koraput which have significantly high forest fire events in present scenario.The outcomes of the present study would certainly guide the policymakers to prepare more effective plan to protect the forest which is main source of livelihood to the tribal population keeping in mind of future climate change impact for prioritization of various districts of state of Orissa suffering from forest fires

    Early Recognition and Management of Small Bowel Perforation

    Get PDF
    Enteroscopy has a procedure-related perforation rate from less than 1% to 6.5%. It seems to be higher in therapeutic enteroscopy, especially polypectomy of large polyps, and in patients who have altered surgical anatomy. Early recognition is life-saving and studies have shown that if surgery is done within 12 hours of perforation the prognosis is better. In a patient who has undergone small bowel endoscopy the diagnosis of small bowel perforation should be suspected if the patient has acute pain in the abdomen. Early diagnosis should be the goal with prompt surgical correction

    Potential Therapeutic Implications of Caffeic Acid in Cancer Signaling: Past, Present, and Future

    Get PDF
    Caffeic acid (CA) has been present in many herbs, vegetables, and fruits. CA is a bioactive compound and exhibits various health advantages that are linked with its anti-oxidant functions and implicated in the therapy and prevention of disease progression of inflammatory diseases and cancer. The anti-tumor action of CA is attributed to its prooxidant and anti-oxidant properties. CA’s mechanism of action involves preventing reactive oxygen species formation, diminishing the angiogenesis of cancer cells, enhancing the tumor cells’ DNA oxidation, and repressing MMP-2 and MMP-9. CA and its derivatives have been reported to exhibit anti-carcinogenic properties against many cancer types. CA has indicated low intestinal absorption, low oral bioavailability in rats, and pitiable permeability across Caco-2 cells. In the present review, we have illustrated CA’s therapeutic potential, pharmacokinetics, and characteristics. The pharmacological effects of CA, the emphasis on in vitro and in vivo studies, and the existing challenges and prospects of CA for cancer treatment and prevention are discussed in this review

    Opposition-Based Quantum Bat Algorithm to Eliminate Lower-Order Harmonics of Multilevel Inverters

    Get PDF
    Selective harmonic elimination (SHE) technique is used in power inverters to eliminate specific lower-order harmonics by determining optimum switching angles that are used to generate Pulse Width Modulation (PWM) signals for multilevel inverter (MLI) switches. Various optimization algorithms have been developed to determine the optimum switching angles. However, these techniques are still trapped in local optima. This study proposes an opposition-based quantum bat algorithm (OQBA) to determine these optimum switching angles. This algorithm is formulated by utilizing habitual characteristics of bats. It has advanced learning ability that can effectively remove lower-order harmonics from the output voltage of MLI. It can eventually increase the quality of the output voltage along with the efficiency of the MLI. The performance of the algorithm is evaluated with three different case studies involving 7, 11, and 17-level three-phase MLIs. The results are verified using both simulation and experimental studies. The results showed substantial improvement and superiority compared to other available algorithms both in terms of the harmonics reduction of harmonics and finding the correct solutions

    A Diamond Shaped Multilevel Inverter With Dual Mode of Operation

    Get PDF
    This study presents a novel multilevel inverter structure that can operate in both switched capacitor and asymmetric DC source modes. In the first mode, it can produce seven-level output voltage employing two switched capacitors and one single DC supply. The five-level output voltage is produced while operating the second mode. The voltage ratio between the input and output voltage for the capacitor mode is 1:3 (triple voltage gain). During the first mode, the capacitor of the inverter is self -balanced whereas the inverter can produce higher voltage output in the DC source mode. The proposed inverter reduces the total standing voltage in both modes of operations as it can generate the output voltage without requiring any additional H-bridge circuit. The feasibility and predominate features of the proposed inverter have been established by comparing with existing topologies in terms of power components count. Results obtained from this study are validated using simulation employing sinusoidal pulse width modulation (SPWM). A hardware prototype has also been developed for further validation

    Biosynthesized Silver Nanoparticle (AgNP) From Pandanus odorifer Leaf Extract Exhibits Anti-metastasis and Anti-biofilm Potentials

    Get PDF
    Cancer and the associated secondary bacterial infections are leading cause of mortality, due to the paucity of effective drugs. Here, we have synthesized silver nanoparticles (AgNPs) from organic resource and confirmed their anti-cancer and anti-microbial potentials. Microwave irradiation method was employed to synthesize AgNPs using Pandanus odorifer leaf extract. Anti-cancer potential of AgNPs was evaluated by scratch assay on the monolayer of rat basophilic leukemia (RBL) cells, indicating that the synthesized AgNPs inhibit the migration of RBL cells. The synthesized AgNPs showed MIC value of 4–16 µg/mL against both Gram +ve and Gram -ve bacterial strains, exhibiting the anti-microbial potential. Biofilm inhibition was recorded at sub- MIC values against Gram +ve and Gram -ve bacterial strains. Violacein and alginate productions were reduced by 89.6 and 75.6%, respectively at 4 and 8 µg/mL of AgNPs, suggesting anti-quorum sensing activity. Exopolysaccharide production was decreased by 61–79 and 84% for Gram +ve and Gram -ve pathogens respectively. Flagellar driven swarming mobility was also reduced significantly. Furthermore, In vivo study confirmed their tolerability in mice, indicating their clinical perspective. Collective, we claim that the synthesized AgNPs have anti-metastasis as well as anti-microbial activities. Hence, this can be further tested for therapeutic options to treat cancer and secondary bacterial infections
    corecore