5 research outputs found

    Sediment Delivery to Sustain the Ganges-Brahmaputra Delta Under Climate Change and Anthropogenic Impacts

    Get PDF
    The principal nature-based solution for offsetting relative sea-level rise in the Ganges-Brahmaputra delta is the unabated delivery, dispersal, and deposition of the rivers’ ~1 billion-tonne annual sediment load. Recent hydrological transport modeling suggests that strengthening monsoon precipitation in the 21st century could increase this sediment delivery 34-60%; yet other studies demonstrate that sediment could decline 15-80% if planned dams and river diversions are fully implemented. We validate these modeled ranges by developing a comprehensive field-based sediment budget that quantifies the supply of Ganges-Brahmaputra river sediment under varying Holocene climate conditions. Our data reveal natural responses in sediment supply comparable to previously modeled results and suggest that increased sediment delivery may be capable of offsetting accelerated sea-level rise. This prospect for a naturally sustained Ganges-Brahmaputra delta presents possibilities beyond the dystopian future often posed for this system, but the implementation of currently proposed dams and diversions would preclude such opportunities

    DataSheet1_Characterization and spatiotemporal variations of ambient seismic noise in eastern Bangladesh.docx

    No full text
    This study analyses the ambient noise field recorded by the seismic network, TREMBLE, in Bangladesh, operational since late 2016. Horizontal-vertical spectral ratios confirm the placement of stations on sediment, many situated on thick sedimentary columns, consistent with local geology. Noise across the broadband spectrum is systematically examined. A high amplitude local microseism (0.4–0.8 Hz) is recorded, originating near the coast and modulated by local tides. The secondary microseism (0.15–0.35 Hz) correlates strongly with wave height in the Bay of Bengal and varies with seasons, with greater power and higher horizontal amplitude in the monsoon season when the wave height is highest. The microseism increases in amplitude and decreases in frequency as a tropical depression moves inland. The primary microseism (∼0.07–0.08 Hz) exhibits no seasonal changes in power but display strong horizontal energy which changes with seasons. Low frequency (0.02–0.04 Hz) noise on the horizontal components has a 24-h periodicity, due to instrument tilt caused by atmospheric pressure changes. A station located next to the major Karnaphuli River shows elevated energy at ∼5 Hz correlated to periods of high rainfall. Anthropogenic noise (∼4–14 Hz) is station-dependent, demonstrating changing patterns in human activity, such as during Ramadan, national holidays and the COVID pandemic. Our work holds implications for seismic deployments, earthquake, and imaging studies, while providing insights into the interaction between the atmosphere, ocean, and solid Earth.</p
    corecore