11 research outputs found

    Targeting metabolic health promotion to optimise maternal and offspring health

    Get PDF
    There is an increase in maternal metabolic burden due to the rise in pregnancies complicated by obesity, gestational diabetes, type 2 diabetes and polycystic ovary syndrome. Metabolic dysfunction during pregnancy is associated with increased risks of long-term morbidity and mortality for women and their offspring. Lifestyle interventions in pregnancy in women at risk of metabolic dysfunction have demonstrated short-term improvements such as reduced gestational weight gain and lowered risk of gestational diabetes. It is not known whether these interventions lead to sustained improvements in the metabolic health of the mother and baby. Pharmacological interventions have also shown benefits for the mother and baby in pregnancy, including improvements in glycaemic control, reduction in gestational weight gain and reduction in large for gestational age infants; however, there remains uncertainty over long-term outcomes for mother and child. Existing studies on interventions targeting metabolic health are limited to selected populations in the preconception and postpartum periods and lack follow-up beyond delivery of the intervention. The COVID-19 pandemic has refocused our attention on the effects of maternal metabolic ill-health that play a role in contributing to premature morbidity and mortality. There is an urgent need for strategies to accurately identify the growing number of women and offspring at risk of long-term adverse metabolic health. Strategies which focus on early identification and risk stratification using individualised risk scores in the pre and inter-conception periods must take priority if we are to target and improve the metabolic health of women and their offspring who are at highest risk

    Precision gestational diabetes treatment: a systematic review and meta-analyses

    Get PDF

    Genotype-stratified treatment for monogenic insulin resistance: a systematic review

    Get PDF
    This is the final version. Available from Nature Research via the DOI in this record. Data availability: All data used in this review is available from publicly available and herein referenced sources. A list of included studies is provided in Supplementary Data 1. All data generated or analyzed during this study are included in this published article and its supplementary information files. Source data for the figures are available as Supplementary Data 2.BACKGROUND: Monogenic insulin resistance (IR) includes lipodystrophy and disorders of insulin signalling. We sought to assess the effects of interventions in monogenic IR, stratified by genetic aetiology. METHODS: Systematic review using PubMed, MEDLINE and Embase (1 January 1987 to 23 June 2021). Studies reporting individual-level effects of pharmacologic and/or surgical interventions in monogenic IR were eligible. Individual data were extracted and duplicates were removed. Outcomes were analysed for each gene and intervention, and in aggregate for partial, generalised and all lipodystrophy. RESULTS: 10 non-randomised experimental studies, 8 case series, and 23 case reports meet inclusion criteria, all rated as having moderate or serious risk of bias. Metreleptin use is associated with the lowering of triglycerides and haemoglobin A1c (HbA1c) in all lipodystrophy (n = 111), partial (n = 71) and generalised lipodystrophy (n = 41), and in LMNA, PPARG, AGPAT2 or BSCL2 subgroups (n = 72,13,21 and 21 respectively). Body Mass Index (BMI) is lowered in partial and generalised lipodystrophy, and in LMNA or BSCL2, but not PPARG or AGPAT2 subgroups. Thiazolidinediones are associated with improved HbA1c and triglycerides in all lipodystrophy (n = 13), improved HbA1c in PPARG (n = 5), and improved triglycerides in LMNA (n = 7). In INSR-related IR, rhIGF-1, alone or with IGFBP3, is associated with improved HbA1c (n = 17). The small size or absence of other genotype-treatment combinations preclude firm conclusions. CONCLUSIONS: The evidence guiding genotype-specific treatment of monogenic IR is of low to very low quality. Metreleptin and Thiazolidinediones appear to improve metabolic markers in lipodystrophy, and rhIGF-1 appears to lower HbA1c in INSR-related IR. For other interventions, there is insufficient evidence to assess efficacy and risks in aggregated lipodystrophy or genetic subgroups.Wellcome TrustWellcome Trus

    Impact of COVID‐19 on gestational diabetes pregnancy outcomes in the UK : a multicentre retrospective cohort study

    Get PDF
    Objective To determine the impact of implementing emergency care pathway(s) for screening, diagnosing and managing women with gestational diabetes (GDM) during COVID-19. Design Retrospective multicentre cohort. Setting Nine National Health Service (NHS) Hospital Trusts/Health boards in England and Scotland. Population 4915 women with GDM pre-pandemic (1 April 2018 to 31 March 2020), and 3467 women with GDM during the pandemic (1 May 2020 to 31 March 2021). Methods We examined clinical outcomes for women with GDM prior to and during the pandemic following changes in screening methods, diagnostic testing, glucose thresholds and introduction of virtual care for monitoring of antenatal glycaemia. Main Outcome Measures Intervention at birth, perinatal mortality, large-for-gestational-age infants and neonatal unit admission. Results The new diagnostic criteria more often identified GDM women who were multiparous, had higher body mass index (BMI) and greater deprivation, and less frequently had previous GDM (all p < 0.05). During COVID, these women had no differences in the key outcome measures. Of the women, 3% were identified with pre-existing diabetes at antenatal booking. Where OGTT continued during COVID, but virtual care was introduced, outcomes were also similar pre- and during the pandemic. Conclusions Using HbA1c and fasting glucose identified a higher risk GDM population during the pandemic but this had minimal impact on pregnancy outcomes. The high prevalence of undiagnosed pre-existing diabetes suggests that women with GDM risk factors should be offered HbA1c screening in early pregnancy

    Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine

    No full text
    Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.</p

    Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine

    No full text
    Abstract: Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine. A systematic review of evidence, across the key pillars of prevention, diagnosis, treatment and prognosis, outlines milestones that need to be met to enable the broad clinical implementation of precision medicine in diabetes care

    Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine

    No full text
    Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.</p
    corecore