13,108 research outputs found
Centralizers of maximal regular subgroups in simple Lie groups and relative congruence classes of representations
In the paper we present a new, uniform and comprehensive description of
centralizers of the maximal regular subgroups in compact simple Lie groups of
all types and ranks. The centralizer is either a direct product of finite
cyclic groups, a continuous group of rank 1, or a product, not necessarily
direct, of a continuous group of rank 1 with a finite cyclic group. Explicit
formulas for the action of such centralizers on irreducible representations of
the simple Lie algebras are given.Comment: 27 page
Earth Observations Division version of the Laboratory for Applications of Remote Sensing System (EOD-LARSYS) user guide for the IBM 370/148. Volume 2: User reference manual
This document presents instructions for analysts who use the EOD-LARSYS as programmed on the Purdue University IBM 370/148 (recently replaced by the IBM 3031) computer. It presents sample applications, control cards, and error messages for all processors in the system and gives detailed descriptions of the mathematical procedures and information needed to execute the system and obtain the desired output. EOD-LARSYS is the JSC version of an integrated batch system for analysis of multispectral scanner imagery data. The data included is designed for use with the as built documentation (volume 3) and the program listings (volume 4). The system is operational from remote terminals at Johnson Space Center under the virtual machine/conversational monitor system environment
A laser spectrometer and wavemeter for pulsed lasers
The design, construction, calibration, and evaluation of a pulsed laser wavemeter and spectral analyzer are described. This instrument, called the Laserscope for its oscilloscope-like display of laser spectral structure, was delivered to NASA Langley Research Center as a prototype of a laboratory instrument. The key component is a multibeam Fizeau wedge interferometer, providing high (0.2 pm) spectral resolution and a linear dispersion of spectral information, ideally suited to linear array photodiode detectors. Even operating alone, with the classic order-number ambiguity of interferometers unresolved, this optical element will provide a fast, real-time display of the spectral structure of a laser output. If precise wavelength information is also desired then additional stages must be provided to obtain a wavelength measurement within the order-number uncertainty, i.e., within the free spectral range of the Fizeau wedge interferometer. A Snyder (single-beam Fizeau) wedge is included to provide this initial wavelength measurement. Difficulties in achieving the required wide-spectrum calibration limit the usefulness of this function
Flight investigation of XB-70 structural response to oscillatory aerodynamic shaker excitation and correlation with analytical results
The low frequency symmetric structural response and damping characteristics of the XB-70 airplane were measured at four flight conditions: heavyweight at a Mach number of 0.87 at an altitude of 7620 meters (25,000 feet); lightweight at a Mach number of 0.86 at an altitude of 7620 meters (25,000 feet); a Mach number of 1.59 at an altitude of 11,918 meters (39.100 feet); and a Mach number of 2.38 and an altitude of 18,898 meters (62,000 feet). The flight data are compared with the response calculated by using early XB-70 design data and with the response calculated with mass, structural, and aerodynamic data updated to reflect as closely as possible the airplane characteristics at three of the flight conditions actually flown
Orbit period modulation for relative motion using continuous low thrust in the two-body and restricted three-body problems
This paper presents rich new families of relative orbits for spacecraft formation flight generated through the application of continuous thrust with only minimal intervention into the dynamics of the problem. Such simplicity facilitates implementation for small, low-cost spacecraft with only position state feedback, and yet permits interesting and novel relative orbits in both two- and three-body systems with potential future applications in space-based interferometry, hyperspectral sensing, and on-orbit inspection. Position feedback is used to modify the natural frequencies of the linearised relative dynamics through direct manipulation of the system eigenvalues, producing new families of stable relative orbits. Specifically, in the Hill–Clohessy–Wiltshire frame, simple adaptations of the linearised dynamics are used to produce a circular relative orbit, frequency-modulated out-of-plane motion, and a novel doubly periodic cylindrical relative trajectory for the purposes of on-orbit inspection. Within the circular restricted three-body problem, a similar minimal approach with position feedback is used to generate new families of stable, frequency-modulated relative orbits in the vicinity of a Lagrange point, culminating in the derivation of the gain requirements for synchronisation of the in-plane and out-of-plane frequencies to yield a singly periodic tilted elliptical relative orbit with potential use as a Lunar far-side communications relay. The Δv requirements for the cylindrical relative orbit and singly periodic Lagrange point orbit are analysed, and it is shown that these requirements are modest and feasible for existing low-thrust propulsion technology
Large Networks of Diameter Two Based on Cayley Graphs
In this contribution we present a construction of large networks of diameter
two and of order for every degree , based on Cayley
graphs with surprisingly simple underlying groups. For several small degrees we
construct Cayley graphs of diameter two and of order greater than of
Moore bound and we show that Cayley graphs of degrees
constructed in this paper are the largest
currently known vertex-transitive graphs of diameter two.Comment: 9 pages, Published in Cybernetics and Mathematics Applications in
Intelligent System
Reframing \u27the problem\u27: students from low socioeconomic status backgrounds transitioning to university
At the heart of this book are people enrolling at university for the first time and entering into the broad variety of social relations and contexts entailed in their ‘coming to know’ at, of and through university
Recommended from our members
On Birthing Dancing Stars: The Need for Bounded Chaos in Information Interaction
While computers causing chaos is acommon social trope, nearly the entirety of the history of computing is dedicated to generating order. Typical interactive information retrieval tasks ask computers to support the traversal and exploration of large, complex information spaces. The implicit assumption is that they are to support users in simplifying the complexity (i.e. in creating order from chaos). But for some types of task, particularly those that involve the creative application or synthesis of knowledge or the creation of new knowledge, this assumption may be incorrect. It is increasingly evident that perfect order—and the systems we create with it—support highly-structured information tasks well, but provide poor support for less-structured tasks.We need digital information environments that help create a little more chaos from order to spark creative thinking and knowledge creation. This paper argues for the need for information systems that offerwhat we term ‘bounded chaos’, and offers research directions that may support the creation of such interface
Analytical electron microscopy of fine-grained phases in primitive interplanetary dust particles and carbonaceous chondrites
In order to describe the total mineralogical diversity within primitive extraterrestrial materials, individual interplanetary dust particles (IDPs) collected from the stratosphere as part of the JSC Cosmic Dust Curatorial Program were analyzed using a variety of AEM techniques. Identification of over 250 individual grains within one chondritic porous (CP) IDP shows that most phases could be formed by low temperature processes and that heating of the IDP during atmospheric entry is minimal and less than 600 C. In a review of the mineralogy of IDPs, it was suggested that the occurrence of other silicates such as enstatite whiskers is consistent with the formation in an early turbulent period of the solar nebula. Experimental confirmation of fundamental chemical and physical processes in a stellar environment, such as vapor phase condensation, nucleation, and growth by annealing, is an important aspect of astrophysical models for the evolution of the Solar System. A detailed comparison of chondritic IDP and carbonaceous chondrite mineralogies shows significant differences between the types of silicate minerals as well as the predominant oxides
- …