81 research outputs found

    Evidence for Surface Effects on the Intermolecular Interactions in Fe (II) Spin Crossover Coordination Polymers

    Get PDF
    From X-ray absorption spectroscopy (XAS) and X-ray photoemission spectroscopy (XPS) it is evident that the spin state transition behavior of Fe(II) spin crossover coordination polymer crystallites at the surface differs from the bulk. A comparison of four different coordination polymers reveals that the observed surface properties may differ from bulk for a variety of reasons. There are Fe(II) spin crossover coordination polymers with either almost complete switching of the spin state at the surface or no switching at all. Oxidation, differences in surface packing, and changes in coordination could all contribute to making the surface very different from the bulk. Some Fe(II) spin crossover coordination polymers may be sufficiently photoactive so that X-ray spectroscopies cannot discern the spin state transition

    Nitrogen-vacancy magnetometry of individual Fe-triazole spin crossover nanorods

    Get PDF
    [Fe(Htrz)2(trz)](BF4) (Fe-triazole) spin crossover molecules show thermal, electrical, and optical switching between high spin (HS) and low spin (LS) states, making them promising candidates for molecular spintronics. The LS and HS transitions originate from the electronic configurations of Fe(II) and are considered to be diamagnetic and paramagnetic respectively. The Fe(II) LS state has six paired electrons in the ground states with no interaction with the magnetic field and a diamagnetic behavior is usually observed. While the bulk magnetic properties of Fe-triazole compounds are widely studied by standard magnetometry techniques their magnetic properties at the individual level are missing. Here we use nitrogen vacancy (NV) based magnetometry to study the magnetic properties of the Fe-triazole LS state of nanoparticle clusters and individual nanorods of size varying from 20 to 1000 nm. Scanning electron microscopy (SEM) and Raman spectroscopy are performed to determine the size of the nanoparticles/nanorods and to confirm their respective spin states. The magnetic field patterns produced by the nanoparticles/nanorods are imaged by NV magnetic microscopy as a function of applied magnetic field (up to 350 mT) and correlated with SEM and Raman. We found that in most of the nanorods the LS state is slightly paramagnetic, possibly originating from the surface oxidation and/or the greater Fe(III) presence along the nanorods’ edges. NV measurements on the Fe-triazole LS state nanoparticle clusters revealed both diamagnetic and paramagnetic behavior. Our results highlight the potential of NV quantum sensors to study the magnetic properties of spin crossover molecules and molecular magnets

    Paraoxonase 1 (PON1) Polymorphisms, Haplotypes and Activity in Predicting CAD Risk in North-West Indian Punjabis

    Get PDF
    Human serum paraoxonase-1 (PON1) prevents oxidation of low density lipoprotein cholesterol (LDL-C) and hydrolyzes the oxidized form, therefore preventing the development of atherosclerosis. The polymorphisms of PON1 gene are known to affect the PON1 activity and thereby coronary artery disease (CAD) risk. As studies are lacking in North-West Indian Punjabi's, a distinct ethnic group with high incidence of CAD, we determined PON1 activity, genotypes and haplotypes in this population and correlated them with the risk of CAD.350 angiographically proven (≥ 70% stenosis) CAD patients and 300 healthy controls were investigated. PON1 activity was determined towards paraoxon (Paraoxonase; PONase) and phenylacetate (Arylesterase; AREase) substrates. In addition, genotyping was carried out by using multiplex PCR, allele specific oligonucleotide -PCR and PCR-RFLP methods and haplotyping was determined by PHASE software. The serum PONase and AREase activities were significantly lower in CAD patients as compared to the controls. All studied polymorphisms except L55M had significant effect on PONase activity. However AREase activity was not affected by them. In a logistic regression model, after adjustment for the conventional risk factors for CAD, QR (OR: 2.73 (1.57-4.72)) and RR (OR, 16.24 (6.41-41.14)) genotypes of Q192R polymorphism and GG (OR: 2.07 (1.02-4.21)) genotype of -162A/G polymorphism had significantly higher CAD risk. Haplotypes L-T-G-Q-C (OR: 3.25 (1.72-6.16)) and L-T-G-R-G (OR: 2.82 (1.01-7.80)) were also significantly associated with CAD.In conclusion this study shows that CAD patients had lower PONase and AREase activities as compared to the controls. The coding Q192R polymorphism, promoter -162A/G polymorphism and L-T-G-Q-C and L-T-G-R-G haplotypes are all independently associated with CAD

    Lender Perceptions of Value Influence of Asbestos Contamination in IncomeProducing Buildings

    No full text
    最近,石棉和其他有害物质对不动产价值的影响,已经开始成为房地产投资者,评估师,保险业者,抵押贷款人和经纪人关注的焦点。本文的重点是探讨石棉的存在是否会影响抵押贷款人的承保决定和房地产价格。贷款人对石棉问题的关注程度是至关重要的,因为房地产通常需要进行债务融资。此外,贷款可供量对于价格的制定也是相当重要的。本文仅限于对收益性建筑中与石棉有关的问题进行探讨。译者单位:厦门大学评估研究中心(361005
    corecore