22,222 research outputs found

    Selective coating for solar panels

    Get PDF
    The energy absorbing properties of solar heating panels are improved by depositing a black chrome coating of controlled thickness on a specially prepared surface of a metal substrate. The surface is prepared by depositing a dull nickel on the substrate, and the black chrome is plated on this low emittance surface to a thickness between 0.5 micron and 2.5 microns

    Method for depositing an oxide coating

    Get PDF
    A metal oxide coating is plated onto a metal substrate at the cathode from an acid solution which contains an oxidizing agent. The process is particularly useful for producing solar panels. Conventional plating at the cathode avoids the presence of oxidizing agents. Coatings made in accordance with the invention are stable both at high temperatures and while under the influence of high photon flux in the visible range

    Method of forming oxide coatings

    Get PDF
    This invention is concerned with an improved plating process for covering a substrate with a black metal oxide film. The invention is particularly directed to making a heating panel for a solar collector. A compound is electrodeposited from an aqueous solution containing cobalt metal salts onto a metal substrate. This compound is converted during plating into a black, highly absorbing oxide coating which contains hydrated oxides. This is achieved by the inclusion of an oxidizing agent in the plating bath. The inclusion of an oxidizing agent in the plating bath is contrary to standard electroplating practice. The hydrated oxides are converted to oxides by treatment in a hot bath, such as boiling water. An oxidizing agent may be added to the hot liquid treating bath

    Commercially available black chrome is an effective solar collector coating

    Get PDF
    Black chrome, electroplated decorative finish, which absorbs and retains solar energy is readily available, easily applied, and low cost. It is indistinguishable from black nickel and is equally feasible on aluminum or steel

    Refinement in black chrome for use as a solar selective coating

    Get PDF
    Black chrome is significant as a solar selective coating because the current extensive use of black chrome in the electroplating industry as a durable decorative finish makes black chrome widely available on a commercial scale and potentially low in cost as a solar selective coating. Black-chrome deposits were modified by underplating with dull nickel or by being plated on rough surfaces. Both of these procedures increased the visible absorptance. There was no change in the infrared reflectance for the dull-nickel - black-chrome combination from that reported for the bright-nickel - black-chrome combination. However, the bright-nickel - black-chrome coating plated on rough surfaces indicated a slight decrease in infrared reflectance. As integrated over the solar spectrum for air mass 2, the reflectance of the dull-nickel - black-chrome coating was 0.077, of the bright-nickel - black-chrome coating plated on a 0.75-micron (30-microinch) surface was 0.070, of the bright-nickel - black-chrome coating plated on a 2.5 micron (100-microinch) surface was 0.064. The corresponding values for the bright-nickel - black-chrome coating on a 0.0125-micron (0.5-microinch) surface, two samples of black nickel, and two samples of Nextrel black paint were 0.132, 0.123, 0.133, and 0.033, respectively

    Black chrome on commercially electroplated tin as a solar selecting coating

    Get PDF
    The reflectance properties of black chrome electroplated on commercially electroplated tin were measured for various black chrome plating times for both the solar and infrared spectrum. The values of absorptance and emittance were calculated from the measured reflectance values. The results indicate that the optimum combination of the highest absorptance in the solar region and the lowest emittance in the infrared of the black chrome plated on commercially electroplated tin is obtained for a black chrome plating time of between one and two minutes

    Survey of coatings for solar collectors

    Get PDF
    Optimum solar selective properties of black chrome require some tailoring of current and time for plating solution being used. Black zinc is produced from high zinc electroplate by subsequent conversion with chromate dip. Measurements have also been made of reflectance of previously known solar selective coatings of black copper and electroplated black nickel

    Fuel element concept for long life high power nuclear reactors

    Get PDF
    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel

    Variation of solar-selective properties of black chrome with plating time

    Get PDF
    The spectral reflectance properties of a commercially prepared black chrome over dull nickel, both plated on steel, for various plating times of the black chrome were measured. The plating current was 180 amperes per square foot. Values of absorptance integrated over the solar spectrum, and of infrared emittance integrated over black-body radiation at 250 F were obtained. It is shown that plating between one and two minutes produces the optimum combination of highest heat absorbed and lowest heat lost by radiation

    Electrical and infrared properties of thin niobium microbolometers near T(sub c)

    Get PDF
    Niobium microbolometers approximately 1 micron wide x 2 micron long x 10 nm thick have been integrated at the feeds of equiangular spiral antennas made of 200 nm thick Nb. The device's current-voltage characteristics and infrared responsivity as a function of DC bias voltage were measured over a range of temperature spanning approximately plus or minus 2 percent around T(sub c). The greatest voltage responsivity occurs well below T(sub c), in a regime where the I-V curve is significantly hysteretic due to self-heating and resembles the I-V curve of a superconducting microbridge
    corecore