125 research outputs found

    Theoretical Treatment of Quasibound Resonances in Two-Color Resonant Four-Wave Mixing Spectroscopy

    Get PDF
    A treatment of continuum states in the application of diagrammatic perturbation theory to calculate the signal produced in two-color resonant four-wave mixing (TC-RFWM) spectroscopy is developed. The third-order susceptibility is significantly modified from that obtained when considering only discrete states. To illustrate the contribution of continuum states, the line profile of a quasibound resonance arising from the configuration interaction of bound and continuum states is derived. Analytic expressions for line profiles are presented for two specific experimental implementations of TC-RFWM used in gas-phase spectroscopic studies. While the TC-RFWM line profiles are found to be very distinct from the line profiles measured in linear spectroscopic techniques, the results demonstrate the important capability to characterize the TC-RFWM line profiles in terms of the same fundamental and physically significant parameters

    The Effect of Laser Bandwidth on the Signal Detected in Two-Color, Resonant Four-Wave Mixing Spectroscopy

    Get PDF
    The effect of laser line shape and bandwidth on the signal detected in two-color, resonant four-wave mixing (TC-RFWM) spectroscopy is determined by means of an ab initio calculation of the third-order polarization based on diagrammatic perturbation theory. Modifications to the approach previously used for the case of delta-function laser line shapes are made by introducing a different treatment of the rotating wave approximation and phase-matching conditions. A three-level excitation scheme for double-resonance spectroscopy of bound and quasibound states is analyzed. In the case of Lorentzian laser line shapes, analytic expressions for the signal line profile are obtained for each excitation scheme. Analytic approximations of the signal line profile are also obtained in the case of Gaussian laser line shapes. (C) 1999 American Institute of Physics. [S0021-9606(99)01917-0]

    Theoretical Treatment of Quasibound Resonances in Two-Color Resonant Four-Wave Mixing Spectroscopy

    Get PDF
    A treatment of continuum states in the application of diagrammatic perturbation theory to calculate the signal produced in two-color resonant four-wave mixing (TC-RFWM) spectroscopy is developed. The third-order susceptibility is significantly modified from that obtained when considering only discrete states. To illustrate the contribution of continuum states, the line profile of a quasibound resonance arising from the configuration interaction of bound and continuum states is derived. Analytic expressions for line profiles are presented for two specific experimental implementations of TC-RFWM used in gas-phase spectroscopic studies. While the TC-RFWM line profiles are found to be very distinct from the line profiles measured in linear spectroscopic techniques, the results demonstrate the important capability to characterize the TC-RFWM line profiles in terms of the same fundamental and physically significant parameters

    The Effect of Laser Bandwidth on the Signal Detected in Two-Color, Resonant Four-Wave Mixing Spectroscopy

    Get PDF
    The effect of laser line shape and bandwidth on the signal detected in two-color, resonant four-wave mixing (TC-RFWM) spectroscopy is determined by means of an ab initio calculation of the third-order polarization based on diagrammatic perturbation theory. Modifications to the approach previously used for the case of delta-function laser line shapes are made by introducing a different treatment of the rotating wave approximation and phase-matching conditions. A three-level excitation scheme for double-resonance spectroscopy of bound and quasibound states is analyzed. In the case of Lorentzian laser line shapes, analytic expressions for the signal line profile are obtained for each excitation scheme. Analytic approximations of the signal line profile are also obtained in the case of Gaussian laser line shapes. (C) 1999 American Institute of Physics. [S0021-9606(99)01917-0]

    Observations of High Vibrational Levels of the 4fσ 41Σ+ u State of H2

    Get PDF
    Resonantly enhanced multiphoton ionization via the EF 1Σg+, v′ = 6 double-well state has been used to probe the energy region below the third dissociation limit of H2 where several high vibrational levels of the 41Σu+ state are expected. Theoretical ab initio potential energy curves for this state predict a deep inner well and shallow outer well where vibrational levels above v = 8 are expected to exhibit the double-well character of the state. Since the 41Σu+ state has f-state character, transitions to it from the ground state are nominally forbidden. However, the d character of the outer well of the EF 1Σg+ state allows access to this state. We report observations of transitions to the v = 9–12 levels of the 41Σu+ state and compare their energies to predicted energies calculated from an ab initio potential energy curve with adiabatic corrections. Assignments are based on measured energies and linewidths, rotational constants, and expected transition strengths. The amount of agreement between the predicted values and the observations is mixed, with the largest discrepancies arising for the v = 9 level, owing to strong nonadiabatic electronic mixing in this energy region

    Observations of High Vibrational Levels of the 4fσ 41Σ+ u State of H2

    Get PDF
    Resonantly enhanced multiphoton ionization via the EF 1Σg+, v′ = 6 double-well state has been used to probe the energy region below the third dissociation limit of H2 where several high vibrational levels of the 41Σu+ state are expected. Theoretical ab initio potential energy curves for this state predict a deep inner well and shallow outer well where vibrational levels above v = 8 are expected to exhibit the double-well character of the state. Since the 41Σu+ state has f-state character, transitions to it from the ground state are nominally forbidden. However, the d character of the outer well of the EF 1Σg+ state allows access to this state. We report observations of transitions to the v = 9–12 levels of the 41Σu+ state and compare their energies to predicted energies calculated from an ab initio potential energy curve with adiabatic corrections. Assignments are based on measured energies and linewidths, rotational constants, and expected transition strengths. The amount of agreement between the predicted values and the observations is mixed, with the largest discrepancies arising for the v = 9 level, owing to strong nonadiabatic electronic mixing in this energy region

    Dynamics of Rydberg States of Nitric Oxide Probed By Two-Color Resonant Four-Wave Mixing Spectroscopy

    Get PDF
    Two-color resonant four-wave mixing (TC-RFWM) spectroscopy has been used to probe highly excited v = 0 and v = 1 Rydberg states of nitric oxide. Transitions to n = 16-30, v = 0, Rydberg states, and the 8p, 9p, 7f, 8f, 8s, and 9s, v = 1 Rydberg states from the A (2)Sigma(+), v\u27 = 0 and 1 states have been recorded. The decay rate of the 8p and 9p, v = 1 states has been extracted from the observed line profiles by using a recently developed model for the excitation of quasibound resonances in TC-RFWM spectroscopy. Transitions from the A (2)Sigma(+), v\u27 = 1 state to the X (2)Pi(3/2), v = 10 state have also been observed, allowing an absolute calibration of the TC-RFWM signal intensity. This calibration is used to determine an excited-state absorption cross section for the 9p, v = 1 Rydberg state. (C) 1998 American Institute of Physics. [S0021-9606(98)01625-0]

    Continuity of heavy Rydberg behaviour in the ungerade ion-pair states of H 2

    Get PDF
    Heavy Rydberg behaviour and absolute quantum defects are reported for resonances in the ungerade manifold of H2 above the (1s, 3l) dissociation limit. The continuity of the vibrational progression of the B\u27\u27B-bar state through the crossing with the 3p asymptote is demonstrated and a predominantly diabatic picture of the vibrational motion emerges, indicating that the ion-pair resonances possess little 61Σu+ state character

    Photoelectron angular distributions from rotationally resolved autoionizing states of N2

    Get PDF
    The single-photon, photoelectron-photoion coincidence spectrum of N2 has been recorded at high (~1.5 cm–1 ) resolution in the region between the N2+ X 2Σg+, v+ = 0 and 1 ionization thresholds by using a double-imaging spectrometer and intense vacuum-ultraviolet light from the Synchrotron SOLEIL. This approach provides the relative photoionization cross section, the photoelectron energy distribution, and the photoelectron angular distribution as a function of photon energy. The region of interest contains autoionizing valence states, vibrationally autoionizing Rydberg states converging to vibrationally excited levels of the N2+ X 2Σg+ ground state, and electronically autoionizing states converging to the N2+ A 2Π and B 2Σu+ states. The wavelength resolution is sufficient to resolve rotational structure in the autoionizing states, but the electron energy resolution is insufficient to resolve rotational structure in the photoion spectrum. A simplified approach based on multichannel quantum defect theory is used to predict the photoelectron angular distribution parameters, β, and the results are in reasonably good agreement with experiment

    Photoelectron angular distributions from rotationally resolved autoionizing states of N2

    Get PDF
    The single-photon, photoelectron-photoion coincidence spectrum of N2 has been recorded at high (~1.5 cm–1 ) resolution in the region between the N2+ X 2Σg+, v+ = 0 and 1 ionization thresholds by using a double-imaging spectrometer and intense vacuum-ultraviolet light from the Synchrotron SOLEIL. This approach provides the relative photoionization cross section, the photoelectron energy distribution, and the photoelectron angular distribution as a function of photon energy. The region of interest contains autoionizing valence states, vibrationally autoionizing Rydberg states converging to vibrationally excited levels of the N2+ X 2Σg+ ground state, and electronically autoionizing states converging to the N2+ A 2Π and B 2Σu+ states. The wavelength resolution is sufficient to resolve rotational structure in the autoionizing states, but the electron energy resolution is insufficient to resolve rotational structure in the photoion spectrum. A simplified approach based on multichannel quantum defect theory is used to predict the photoelectron angular distribution parameters, β, and the results are in reasonably good agreement with experiment
    • …
    corecore