
Bryn Mawr College
Scholarship, Research, and Creative Work at Bryn Mawr
College

Physics Faculty Research and Scholarship Physics

1998

Theoretical Treatment of Quasibound Resonances
in Two-Color Resonant Four-Wave Mixing
Spectroscopy
F. Di Teodoro

Elizabeth McCormack
Bryn Mawr College, emccorma@brynmawr.edu

Let us know how access to this document benefits you.

Follow this and additional works at: http://repository.brynmawr.edu/physics_pubs

Part of the Physics Commons

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College. http://repository.brynmawr.edu/physics_pubs/9

For more information, please contact repository@brynmawr.edu.

Custom Citation
F. Di Teodoro and E.F. McCormack, Phys. Rev. A 57, 162 (1998).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship;  Research;  and Creative Work at Bryn Mawr College

https://core.ac.uk/display/303062377?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.brynmawr.edu?utm_source=repository.brynmawr.edu%2Fphysics_pubs%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu?utm_source=repository.brynmawr.edu%2Fphysics_pubs%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/physics_pubs?utm_source=repository.brynmawr.edu%2Fphysics_pubs%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/physics?utm_source=repository.brynmawr.edu%2Fphysics_pubs%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/open-access-feedback.html
http://repository.brynmawr.edu/physics_pubs?utm_source=repository.brynmawr.edu%2Fphysics_pubs%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=repository.brynmawr.edu%2Fphysics_pubs%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/physics_pubs/9
mailto:repository@brynmawr.edu


Theoretical treatment of quasibound resonances
in two-color resonant four-wave mixing spectroscopy

F. Di Teodoro and E. F. McCormack
Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010

~Received 30 June 1997; revised manuscript received 10 September 1997!

A treatment of continuum states in the application of diagrammatic perturbation theory to calculate the
signal produced in two-color resonant, four-wave mixing~TC-RFWM! spectroscopy is developed. The third-
order susceptibility is significantly modified from that obtained when considering only discrete states. To
illustrate the contribution of continuum states, the line profile of a quasibound resonance arising from the
configuration interaction of bound and continuum states is derived. Analytic expressions for line profiles are
presented for two specific experimental implementations of TC-RFWM used in gas-phase spectroscopic stud-
ies. While the TC-RFWM line profiles are found to be very distinct from the line profiles measured in linear
spectroscopic techniques, the results demonstrate the important capability to characterize the TC-RFWM line
profiles in terms of the same fundamental and physically significant parameters.@S1050-2947~98!01301-8#

PACS number~s!: 32.70.Jz, 39.30.1w, 42.65.2k

I. INTRODUCTION

Resonant four-wave mixing~RFWM! is a nonlinear spec-
troscopic technique that can offer distinct advantages over
linear techniques for studying the structure and dynamics of
atomic and molecular systems in the gas phase. Several ap-
pealing features of RFWM have made it attractive for doing
state-selective spectroscopy. It is a coherent, background-
free technique with favorable signal-to-noise ratios and since
the signal is based only on absorption and not on a particular
decay mode for detection, any excited state may be probed
regardless of its decay mode~ionization, dissociation, or
fluorescence!. High sensitivity can be obtained for a range of
pressures and number densities and low detection limits in
the range 109–1012 molecules cm23 per quantum state have
been observed@1,2#. These attributes have led to the appli-
cation of RFWM to a wide variety of investigations in
atomic and molecular physics and many have been described
in several informative review articles@2–5#.

Four-wave mixing spectroscopy relies on the interaction
of three laser beams in a medium of interest to produce a
nonlinear polarization via the third-order term of the electric
susceptibility (x (3)) @6#. The induced polarization generates
a fourth, coherent light beam that is detected as the signal. A
dramatic enhancement in the signal intensity occurs when-
ever the frequency of the incident laser beams is resonant
with a transition in the medium. Thus a spectrum can be
obtained by selectively tuning the frequency of the input
laser beams. Two-color~TC! RFWM is a doubly resonant
implementation of resonant four-wave mixing in which two
optical fields have frequencies resonant with two different
transitions. TC-RFWM techniques have received consider-
able attention due to their state-selective capabilities and re-
cent results include studies of numerous stable and transient
species@7–17#, stimulated emission pumping of C3 and
HCO using RFWM@18#, and the application of a pulsed
slit-jet expansion source to RFWM spectroscopy@19#.

One area in which TC-RFWM spectroscopy has signifi-
cant potential to contribute to our understanding is that of

excited states that decay rapidly by intramolecular, nonradi-
ative processes~for example, internal energy conversion and
predissociation!. These states can be difficult to study by
traditional spectroscopic techniques, such as laser-induced
fluorescence and resonantly enhanced multiphoton ioniza-
tion. The recent application of TC-RFWM to studies of pre-
dissociating and autoionizing states in nitric oxide@8,20#
provide examples where this capability of TC-RFWM can be
developed and tested. In these experiments, continuum states
are accessed in the four-wave mixing process and the inter-
pretation of the measured line profiles can provide important
information on the dynamics of the decay processes. How-
ever, to obtain that information, a model of the expected line
profile that takes into account the role of the continuum
states in the four-wave mixing process is needed.

Diagrammatic perturbation theory has proven to be a very
effective tool in analyzing the signals obtained in gas-phase,
TC-RFWM spectroscopy. It has been used successfully by
Williams and co-workers@21# to develop expressions for sig-
nal intensities observed in degenerate four-wave mixing
@22#, TC-RFWM for the case of stimulated emission pump-
ing @18#, and most recently they have reported general ana-
lytic signal expressions that can be applied to TC-RFWM
experimental schemes used in double-resonance spectros-
copy @21#. In this paper a similar approach is adopted to
calculate the four-wave mixing signal that arises in cases
where continuum states of the medium make contributions to
the third-order susceptibility. In these cases, the rotating-
wave approximation plays a key role and leads to distinct
line-shape factors in the expression for the third-order polar-
ization. To illustrate these effects, the line profile of a qua-
sibound resonance is derived for several experimental imple-
mentations of TC-RFWM. It is shown that the TC-RFWM
line profile for a quasibound resonance, modeled as a bound
and continuum state coupled by configuration interactions,
can be written in terms of the same line-shape parameters
used in the analysis of linear spectra. A comparison shows
that the quasibound line profile observed by using TC-
RFWM is significantly different from the line profile ob-
served by using a linear spectroscopic technique and a proper
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treatment is required to obtain accurate decay parameters.
An analysis of the line profile of a quasibound resonance

observed by using RFWM techniques has been reported pre-
viously by Wynne and co-workers in the context of third-
harmonic generation in alkali-metal atomic vapor@23#. Their
experiment used a configuration where a two-photon transi-
tion between two bound states of the metal was excited, fol-
lowed by single-photon absorption to the autoionizing level.
The detected, third-harmonic signal arose from the down-
ward transition from the autoionizing level to the lowest of
the two bound states. In this case, the theoretical analysis of
the observed spectra@24,25# involved the coupling between
each of the two bound states and the autoionizing state and,
as a consequence, required the introduction of two sets of
line-shape parameters. The TC-RFWM schemes considered
here, however, are distinct from this third-harmonic genera-
tion scheme and thus require a different analysis.

The paper is organized in the following way. In Sec. II,
the configuration-interaction treatment of quasibound states
is briefly reviewed and in Sec. III the implementation of this
model in the derivation of the third-order electric suscepti-
bility is presented. In Sec. IV the expected line-shape func-
tion for several TC-RFWM experimental configurations used
in double-resonance spectroscopy is explicitly calculated. In
Sec. V those line profiles are discussed and compared to their
equivalents in linear spectroscopy. Finally, in Sec. VI the
results are summarized.

II. CONFIGURATION-INTERACTION TREATMENT
OF QUASIBOUND STATES

In the context of atomic and molecular spectroscopy, qua-
sibound states arise from the interaction of discrete and con-
tinuum configurations of a system. Well-known examples
include autoionization and predissociation. The mixed nature
of quasibound states can result in asymmetric resonant struc-
tures in measurements of, for example, photoemission, pho-
toabsorption, photodetachment, and photofragmentation re-
flecting the competing processes in the time evolution of the
system. The observed line profiles hold important informa-
tion about the decay dynamics of these resonances and a
large number of different theoretical approaches have been
devised to analyze them including the general and effective
tool of multichannel quantum-defect theory~MQDT! @26#.
The interaction of a single, isolated discrete level with a
single continuum, however, can be treated more simply by
using the configuration-interaction method of Fano@27,28#
and this is the model we use below to illustrate the role of
continuum states in the calculation of TC-RFWM signals.

The configuration-interaction model is illustrated in Fig.
1~a! for the example of an autoionizing state. The stateuA&,
well separated from any other discrete state, lies above the
first ionization potential~IP! of the field-free HamiltonianH
and autoionizes with a rateG. Because of the degeneracy in
energy betweenuA& and the ionization continuum, neither
uA& nor the unperturbed continuum is an exact eigenstate of
H. By diagonalizing the portion of the energy matrix that
belongs to the set of states above the IP, includinguA& and
the unperturbed continuum, a new set of eigenstates that
form a continuous manifold of so-called Fano states is ob-

tained. A Fano state is indicated byuh), where the reduced
index h is defined as

h5
vhe2vR

G/2
. ~1!

Here \vhe is the energy difference between the Fano state
and the intermediate stateue& and \vR corresponds to the
energy difference between the original autoionizing stateuA&
and ue& plus a small energy shift factor that depends onG
and is often negligible@29#. The energy indexh takes on
numerical values within a suitable continuous intervalDh
that spans the set of Fano states.

The spectral density of the dipole transition probability
for photoexcitation fromue&→uh) is given by@29#

z^eumnuh!z25pc

~q1h!2

11h2
1pu . ~2!

The right-hand side of Eq.~2! represents the well-known
Fano line profile of an isolated autoionizing resonance mea-
sured using a linear spectroscopic technique such as photo-
absorption. Herepc is the direct photoionization probability,
namely, z^chumnue& z2, where uch& is the unperturbed con-
tinuum state having the same energy of the Fano stateuh)
and pu is the probability of transitions to other ionization
continua not interacting with the autoionizing state. Theq
asymmetry parameter in Eq.~2! is given by

q5
^Aumnue&

p^AuHuch&^chumnue&
, ~3!

while the lifetime of the autoionizing level is given by
\G.2p z^AuHuch& z2. The values ofq, pc , pu , andG may
be considered to be nearlyh independent for a range of
values ofh abouth50 @29#.

III. FOUR-WAVE MIXING INVOLVING QUASIBOUND
STATES

A. General considerations

The signal intensity in a four-wave mixing~FWM! pro-
cess is proportional to the squared modulus of the cycle av-
erage of the third-order polarization induced by the incident

FIG. 1. ~a! Configuration-interaction~CI! model of a quasi-
bound resonance.~b! Nonparametric TC-RFWM process discussed
in the text.
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fields. The expression of thenth Cartesian component of the
polarization, at a given pointr and timet, can be written in
the general case as@6#

Pn
~3!~r ,t !5

1

~2p!3 (
a3 ,a2 ,a151

3 E
2`

`

dv3E
2`

`

dv2E
2`

`

dv1

3xna3a2a1

~3!
Ea3

~r ,v3!Ea2
~r ,v2!

3Ea1
~r ,v1!exp~2 ivst !. ~4!

The indicesa3 ,a2 ,a1 refer to Cartesian components and the
numerical subindices identify the time ordering: namely,
Eam

(r ,vm) is the Fourier transform of theam component of

mth field interacting with the medium. The signal frequency
vs equalsv11v21v3 andxna3a2a1

(3) is the third-order elec-

tric susceptibility tensor.
The expression forxna3a2a1

(3) as a function ofv1 ,v2 ,v3

may be obtained by solving, to the third perturbative order in
the interaction with external fields, the von Neumann equa-
tion that describes the time evolution of the material density
operator. This procedure is described in Ref.@30# and will
not be recalled here. We adapt the general expression of the
susceptibility to the situation shown in Fig. 1~a! by making
the assumption that the thermal equilibrium population of all
states is negligible except for the lowest stateu i & and by
observing that the relevant matter states entering the evalua-
tion of x (3) include two discrete states and the continuous
manifold of Fano states. The susceptibility can then be ex-
pressed as

xna3a2a1

~3! 52
r i i

0N

6\3 (
perm

E
Dh

dh (
a,b,c5 i ,e,h

mn
iama3

abma2

bcma1

ci

3@Gcb~v31v21v1!Gca~v21v1!Gci~v1!

1Gcb~v31v21v1!Gca~v21v1!Gia~v1!

1Gcb~v31v21v1!Gib~v21v1!Gia~v1!

1Gai~v31v21v1!Gbi~v21v1!Gci~v1!

2Gcb~v31v21v1!Gdb~v21v1!Gia~v1!

2Gba~v31v21v1!Gca~v21v1!Gci~v1!

2Gba~v31v21v1!Gbi~v21v1!Gci~v1!

2Gic~v31v21v1!Gib~v21v1!Gia~v1!# , ~5!

where r i i
0 is the diagonal element of the material density

matrix corresponding to the thermal-equilibrium population
of the stateu i & and N the number density of the medium.
The first summation accounts for the six possible permuta-
tions of v1, v2, and v3, while a, b, and c in the second
summation are matter state indices that may take as values
i , e, or h. The integration overh represents the summation
over the set of Fano states as required by the definition of
x (3).

In addition, the following abbreviation for the four-point
dipole matrix element has been adopted:

mn
iama3

abma2

bcma1

ci 5^ i umnua&^auma3
ub&^buma2

uc&^cuma1
u i &.

In the square brackets are eight triplets of formal Green
propagators@30#. In the weak-field limit where no saturation
effects occur and assuming no velocity effects, each Green
propagator in Eq.~5! is given by

Gab~vE!5
1

vE2vab1 iGab
~6!

and is a function of a field-related frequencyvE , which can
take on the valuesv1 , v21v1, or v31v21v1. The Green
propagators depend parametrically upon an intrinsic fre-
quencyvab , wherevab52vba and \uvabu is the energy
gap between statesua& and ub&, and on Gab , which is
a relaxation factor. The relaxation factorGab is regarded
simply as the average decay rate of statesua& and ub& be-
cause there is no collisional pure dephasing of the coherence
between states in the low-density environments considered
here@18,21#. The decay rate of any Fano state is assumed to
be G.

B. Incident fields

The TC-RFWM schemes can often be interpreted in terms
of a conceptually simple picture of the formation and
the scattering from laser-induced gratings. Two nearly co-
propagating laser beams overlapped at a small crossing
angle in a medium and resonant with a transition in that
medium will produce a spatial modulation in the optical
properties of the medium that constitutes a diffraction grat-
ing. A third laser beam is then scattered off this
laser-induced grating and the scattered beam is detected as
the four-wave mixing signal. The first two laser beams
are calledgrating beamsand the third beam is called the
probe beam. The two excitation schemes to be considered
are depicted in Figs. 1~b! and 2~a!. For example, in the
scheme shown in Fig. 1~b!, the grating beams with frequency
vg are tuned on the transitionu i &↔ue&, and the third beam
having the frequencyvp is tuned to scan over transitions
ue&→uh). The scattered light beam detected as the signal is
shown as a dotted downward arrow with a frequency
vs5vp .

Assuming d-like laser bandwidths, the plane-wave ap-
proximation, and the same linear polarization for all laser
beams, the Fourier-transformed fields in Eq.~4! may be writ-
ten as

Ea1
~r ,v1!5Egea1

d~v12vg!exp~ ikg1
•r !

1Eg* ea1
d~v11vg!exp~2 ikg1

•r !,

Ea2
~r ,v2!5Egea2

d~v22vg!exp~ ikg2
•r !

1Eg* ea2
d~v11vg!exp(2 ikg2

•r ),

Ea3
~r ,v3!5Epea3

d~v32vp!exp~ ikp•r !

1Ep* ea3
d~v31vg!exp~2 ikp•r ! . ~7!
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In Eq. ~7!, Eg andEp are the complex amplitudes of grating
and probe beams, respectively,kg1

and kg2
(ukg1

u5ukg2
u

5vg /c) are the wave vectors of the grating beams,kp is the
wave vector of the probe beam, ande is a real unit vector.
Overall, any triple productEa3

(r ,v3)Ea2
(r ,v2)Ea1

(r ,v1)
has eight terms. Substituting the three expressions for
the fields written in the form of Eq.~7! into Eq. ~4! for
the polarization, the triple frequency integration can be
immediately performed. Next, by choosing the phase-
matching condition asvs5vp , the number of terms
in the triple product is reduced from eight to three, with
Fourier transforms centered onvg , 2vg , and vp ,
respectively, in any time-ordering permutation. Correspond-
ingly, the argument vE of the Green propagator in
Eq. ~6! assumes only six values:vE5vp ,6vg ,vp6vg ,0.

C. Rotating-wave approximation

The expression for the third-order susceptibility in Eq.~5!
can be simplified by carefully applying the rotating-wave
approximation~RWA! using the double-sided~DS! Feynman
diagram formalism@31#. Consider the excitation scheme
shown in Fig. 1~b! and the Feynman diagrams that describe
it, depicted in Fig. 3. At thermal equilibrium the material
density operator contains only the projector onto the lowest
state, namely,r i i

0 u i &^ i u, and therefore the first interaction
must be an absorption and resonance is obtained only
if the frequency of the field isvg5 vei ~creation
of the coherencereiue&^ i u) or vg52vei ~creation of the
coherencer ieu i &^eu). The interaction with the probe field can
only take place when the coherencereiue&^ i u ~or the
populationreeue&^eu) has been generated and therefore not
before the interaction with the field at frequencyvg .
That is, the temporal sequencevp ,2vg is not allowed.
The effect is the creation of a continuous manifold of coher-
encesrh i uh)^ i u ~or rheuh)^eu) involving all Fano states.
At the end of the three interactions, a signal at frequency
vp is detected, that is, an emission takes place by a
downward transitionuh)→ue& and a populationreeue&^eu
is left in the medium. Only three resonant diagrams
are consistent with this scheme and they are represented in
Fig. 3. Each diagram is continuously replicated for every
uh).

To clarify the criterion underlying the choice of the
diagrams in Fig. 3, the connection between the terms in
Eq. ~5! for the susceptibility and the diagrams is recalled
@30#. Each diagram represents one of the triplets of Green
propagators in Eq.~5! and a single propagator, associated
with a specific interaction, is symbolized by a wavy line.
The argument of each propagator is determined by adding
the frequency that labels the corresponding wavy line
to the frequencies of all wavy lines preceding it in
chronological order, if any. The indices of intrinsic fre-
quency and relaxation factor@see Eq. ~6!# refer to the
pair of states forming the coherence that is given by the
considered interaction. Finally, the sign of the triplet is
(21)n, wheren is the number of wavy lines acting from the
right.

The choice of diagrams in Fig. 3 is equivalent to the
selective application of the RWA to the expression for the
third-order susceptibility, Eq.~5!. When the argument
of a propagator in Eq.~5! is vE5vp ,6vg ,vp1vg ,0
and the intrinsic frequency isvhe ,7vei ,vh i ,0, respec-
tively, a resonant term is obtained, that is, the frequencies
in the denominator of the propagator cancel each other
and only a relaxation factor remains whose order of
magnitude is always in the radio-frequency range thereby
producing an overall value for the propagator that is
large and dominates in its contribution to the susceptibility.
In any other case, a noncancelling optical frequency
results in the denominator and the entire triplet to which
that propagator belongs can be neglected as being much
smaller in magnitude than the contribution due to resonant
terms.

The application of the RWA to terms including the Fano
states, however, does not simplify in the same manner and
requires careful consideration. The nonvanishing terms will
include in the summation each propagator with an argument
vp ~or vp1vg) for any value of h in Dh , that is, for any
possible value ofvhe ~or vh i). This is justified from a physi-
cal point of view. Ash scans continuously overDh , select-
ing different Fano states, the corresponding detuning values
vp2vhe ~or vp1vg2vh i), at afixedvp ~or at afixedvp
andvg) fall in a frequency interval typically ranging from 0
to G, which is the characteristic width of the Fano state dis-
tribution as given by Eqs.~1! and ~2!. Thus we have two
types of nonvanishing terms. In the purely resonant case, that
is, when the detuning is 0, the denominator of the corre-

FIG. 2. ~a! Parametric TC-RFWM scheme discussed in the text.
~b! Corresponding double-sided Feynman diagrams for the scheme
shown in~a!.

FIG. 3. Double-sided Feynman diagrams for the TC-RFWM
scheme shown in Fig. 1.
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sponding Green propagator will consist again only of a re-
laxation factorGhe (Gh i). In the case where the detuning is
of the order ofG, we obtain a denominator of the type
G1 iGhe (or1 iGh i), which is of the same order of magni-
tude as the denominator for the zero-detuning case. In fact,G
dominates over the decay rate of bound states and therefore
the relationship

Gh i.Ghe.G/2 ~8!

holds.
The derivation from first principles of the expression for

the susceptibility involving a quasibound resonance is useful
because it highlights that the entire manifold of Fano states
contributes to the susceptibility. At first sight, the Feynman
diagrams that describe this process are the same diagrams
that would be found by considering a level scheme of three
discrete states, roughly repeated as many times as there are
Fano states. However, it is ambiguous to borrow,a priori,
the DS Feynman diagrams that apply to the case of discrete
states and somehow coherently add these diagrams to get a
sense of the effect of the continuum. The risk is to argue that
the range of continuum states to be included depends on the
laser bandwidth. The presentation here, however, demon-
strates that this would not be correct. No coherent excitation
of states takes place in the model because the laser band-
width is regarded as simplyd-like, yet all the Fano states
contribute to the susceptibility and thus to the TC-RFWM
signal.

This is a direct result of the general definition of the sus-
ceptibility combined with the proper application of the
RWA. According to the general definition given in Ref.@30#
and substantially recalled here in Eq.~5!, the susceptibility is
a property inherent to the medium, depending only on the
distribution of stationary states~belonging to both discrete
and continuum configurations! of the medium itself and does
not involve features of the external field. In addition, the
application of the RWA to the susceptibility uses only the
center-line frequency of the fields, with no consideration of
their bandwidth. Overall, therefore, the entire evaluation of
the susceptibility carried out here does not depend on the
laser bandwidth. It is rather the third-order polarization that
exhibits such a dependence as explicitly shown by Eq.~4! in
which the Fourier transform of the input fields is directly
involved. Apart from practical consequences concerning cal-
culations and numerical results, this conceptual aspect of
treating continuum states is important and emphasized here
because it is strictly correlated with the nonlinear nature of
the technique and represents an important difference from
conventional linear spectroscopy.

IV. RESULTS

A. Nonparametric process

In standard, nonlinear optics terminology, a FWM process
described by DS Feynman diagrams in which interactions
occur on both sides is callednonparametricand this conven-
tional label is adopted for the processes shown in Figs. 1~b!
and 3. Carrying out the prescriptions discussed above for this
excitation scheme, Eq.~5! for the susceptibility reduces to

xna3a2a1

~3! 5
r i i

0N

6\3 EDh

mn
iema3

ehma2

hema1

ei
L~vg ,vp ;h!dh,

~9!

where the~complex! line-shape functionL(vg ,vp ;h) has
been introduced as

L~vg ,vp ;h!5
1

vp2vhe1 iGhe

3F 1

iGee~vg2vei1 iGei!

1
1

iGee~2vg1vei1 iGei!

1
1

~vg2vei1 iGei!~vp1vg2vh i1 iGh i !
G .

(10)

Equation~10! for the line-shape function may be simplified
by observing that

vh i5vhe1vei ~11!

and by assuming that the grating beams are in resonance, that
is, vg5vei . Also, in the limit of an infinitely long-lived
ground state, the following two approximations hold@18#:

Ghe.Gei1Gh i ~12a!

Gee.2Gei . ~12b!

Substituting these relations into Eq.~10! yields a more com-
pact line-shape function

L~vp ;h!5
1

Gei
2 ~vp2vhe1 iGh i !

. ~13!

By assuming further that the polarizations of the input fields
are all orientated along thenth axis in the reference frame of
the laboratory, the overall polarization can be written as

Pn
~3!~r ,t !5

r i i
0N

6h3
EpuEgu2z^ i umnue& z2exp@2 i ~vpt1ks•r !#

3E
Dh

z^eumnuh!z2L~vg ,vp ;h!dh, ~14!

whereuksu satisfies the phase-matching condition

uksu5ukg1
2kg2

1kpu5vp /c. ~15!

An example geometry, often referred to as the laser-induced
grating configuration@17# and used by many experimental-
ists, is illustrated in Fig. 4. The direction ofks is derived in
Appendix A.

Frequently, in TC-RFWM experiments that use pulsed la-
sers, probe light pulses can be either overlapped or delayed
in time with respect to the grating beam light pulses. In the
case of a delayed probe pulse, the diagram shown in Fig. 3~a!
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has no physical meaning. As a consequence, the line-shape
function for the case of a delayed probe, obtained under the
same assumptions used to derive Eq.~13!, is given by

L~vp ;h!5
1

Gei
2 ~vp2vhe1 iGhe!

. ~16!

An expression for the intensity of the TC-RFWM signal
can now be obtained by introducing the reduced frequency

jp[
vp2vR

G/2

and substituting Eq.~2! for the transition probability to the
Fano states into the equation~14! for the polarization and
taking the absolute square. The same final expression is ob-
tained for both line-shape functions given in Eqs.~13! and
~16!. In this expression for the TC-RFWM signal, the factor
relevant to the line profile is given by

I~jp!}U 1

Gei
2 G

E
Dh

dh
1

jp2h1 i F pc

~q1h!2

11h2
1puGU2

.

~17!

By using the integration procedure illustrated in the Appen-
dix B, the line profile can be written, to within a constant
coefficient, as

I~jp!5
~q212r 11!21@2q1~11r !jp#2

jp
214

, ~18!

where r[pu /pc . Before proceeding with a discussion of
this line profile, the analogous line profile for the mixing
scheme shown in Fig. 2 is derived.

B. Parametric process

In Fig. 2~a! a second excitation scheme used to advantage
in TC-FWM experiments is shown. Here the grating beams
are in resonance with the upper transition and the probe is
tuned to the lower transition. The detected signal then arises
from the bound-to-bound transitionue&→u i &. Based upon the
same principles illustrated for the previous case, only one DS
Feynman diagram, shown in Fig. 2~b!, is involved in the
mixing process. In this diagram all interactions are on the
same side and thus the process is labeled asparametric. Fol-
lowing the same prescriptions used above, the line-shape
function for this process is found to be

L~vg ,vp ;h!5
1

~vp2vei1 iGei!
2~vp1vg2vh i1 iGh i !

.

~19!

By using Eqs.~8! and~11! and introducing the reduced vari-
ables

jg5
vg2vR

G/2
, ~20a!

dp5
vp2vei

Gei
, ~20b!

the line profile factor in the expression for the signal inten-
sity is given by

I~jg ,dp!}U 1

~dp1 i !2EDh

dh
1

dp1jg2h1 i

3F pc

~q1h!2

11h2
1puGU2

. ~21!

By using again the integration procedure illustrated in Ap-
pendix B, the line profile in this case is given, to within a
constant coefficient, by

I~jg ,dp!5
1

~dp
221!214dp

2

3
~q212r 11!21@2q1~11r !~jg1dp!#2

~jg1dp!214
.

~22!

V. DISCUSSION

A. Nonparametric process

In Fig. 5~a! the line profile given by Eq.~18! has been
plotted in units ofG/2 for different values of the coefficient
q. A suitable normalization has been adopted in all of the
profiles shown in Fig. 5 and the profiles shown in the fol-
lowing figures in order to make comparisons of the different
line profiles. Note that the Fano profile described by Eq.~2!
and the profiles described by Eqs.~18! and~22! are nonnor-
malizable on a large energy scale since they tend to 1 far
from resonance, which implies that their integral over the
entire range of detuning will diverge. This behavior can be
traced back to the assumption that the parameters involved in
Eq. ~2! are nearly energy independent. The profiles are there-
fore normalized by the area under the curves calculated on an
abscissa interval of210 to 10. The difference introduced by
this normalization compared to a normalization extending
over all detunings will be small as long as the real behavior
of the line profiles is to go to zero far away from resonance,
which is the expected behavior as required for the total tran-
sition probability to be unitary.

It is immediately evident from Fig. 5~a! that the TC-
RFWM line profiles show an asymmetry degree that depends
on q. The physical parameterq is an important objective of
spectroscopic investigations concerning quasibound states

FIG. 4. Wave-vector diagram illustrating an example phase-
matching condition for the TC-RFWM process.
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and may be extracted from experimental data through a fit-
ting procedure based on Eq.~18!. Thus TC-RFWM can be
used effectively to obtain the same information made avail-
able by linear photoabsorption techniques. Further, the line
profile given by Eq.~18! exhibits invariance under simulta-
neousq andjp reversal expressed by

I~jp ;q!5I~2jp ;2q!. ~23!

The line profiles with oppositeq mirror each other about the
axisjp50, which is also a characteristic of the Fano profiles
described by Eq.~2!. ~See Appendix B for details.!

In Fig. 5~b! the line profile given by Eq.~18!, for q51.5
and r 50, is plotted along with the corresponding Fano line
profile given by Eq.~2!. Unlike the Fano profile, which exi-
bits a zero ath52q for every value ofq, the spectral line

profile in Eq.~18! has no zero. In fact, the numerator consists
of the sum of two squares that vanishes if and only if both
terms vanish, but the first term (q212r 11)2 is strictly posi-
tive for any value ofq ~andr ). Such a natural background is
physically expected as evidence of the nonlinear nature of
the process exhibited in these line profiles. Indeed, the re-
sponse of the medium is always determined by the entire set
of Fano states as discussed in Sec. III, which implies that, at
any value ofjp , there are susceptibility terms containing
non-vanishing dipoles of the formz^eumnuh) z2, with hÞq,
which give a nonzero contribution to the signal. The result-
ing difference in the line profile is particularly evident in the
inset in Fig. 5~b! showing the slope of the profiles in the
range of detuning of interest. In addition to the separation
between the slope zeros corresponding to the profile minima,
the slope of the Fano profile goes through a minimum close
to the zero of the profile. This peculiarity~resulting in a local
inversion of curvature in the corresponding line profile! is
absent in the TC-RFWM signal and causes the pedestals of
the two line profiles to differ substantially. This behavior is a
feature that is of crucial importance in analyzing observed
line profiles and may represent, if experimentally confirmed,
an important test of the model presented here.

While the sharp distinction in the shape of the two profiles
tends to be reduced in the limit of very small and very large
q, the above-mentioned natural background of the TC-
RFWM line shape remains even whenq50. This is in con-
trast to the Fano profile which can exhibit a so-called win-
dow resonance that reaches zero at its center. As shown in
Fig. 5~a!, the TC-RFWM window resonance does not reach
the zero level, even whenr 50. For large values ofq, both
line profiles given by Eqs.~2! and ~18! tend to Lorentzian
profiles with the following asymptotic behavior:

~q1h!2

11h2
;

1

h211
~Fano!, ~24a!

I~jp!;
1

jp
214

~TC-RFWM!. ~24b!

The full width at half maximum~FWHM! of the Lorentzian
in Eq. ~24a! is 2 in units ofG/2 ~or G in unreduced units!,
while the FWHM extracted from Eq.~24b! is 4 in units of
G/2 ~or 2G in unreduced units!. This is another important
detail from an experimental point of view. Even though both
profiles are asymptotically Lorentzian for largeq, the physi-
cal value ofG is given by the FWHM when the autoionizing
feature is probed by a linear photoabsorption technique, but
it is given by the half-width at half maximum when it is
probed by means of TC RFWM. In general, the difference in
the denominators on the right-hand sides of Eqs.~2! and~18!
will make the width of the TC-RFWM profile larger, for a
given value ofq, than the width of the corresponding Fano
profile.

In Fig. 6, TC-RFWM line profiles from Eq.~18! are
shown for different values ofr[pu /pc . For q'0 and
uqu@1, increasingr simply results in rescaling the entire
profile with respect to the case of negligibler . The same
aspect is observed in Fano profiles at any value ofq as
shown in Fig. 7~b!. A distinction does occur between the two

FIG. 5. ~a! TC-RFWM profiles for different values ofq for the
nonparametric TC-RFWM process depicted in Figs. 1~b! and 3.
Profiles for negative values ofq are obtained by reversing the ab-
scissa scale.~b! Comparison of a TC-RFWM profile and a Fano
profile with q51.5. Inset: slope of the two profiles in~b! for the
detuning interval (210,0).
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cases, however, foruqu'1. Here the interplay betweenr and
q, which is determined by the particular functional depen-
dence upon these parameters that characterizes the line pro-
file in Eq. ~18!, gives rise to a geometrical deformation of the
TC-RFWM profile, which is indicated by the arrow in Fig.
7~a!. Thus the asymmetry of the TC-RFWM profile is influ-
enced by bothq andr . This is in contrast to the behavior of
the Fano line shape shown in Fig. 7~b! whose asymmetry
depends only onq.

B. Parametric process

The first result to note about the parametric process is
that, in the case of negligible probe detuning (dp.0), the
line profile given by Eq.~22! becomes that of Eq.~18! with
jg in place ofjp . This implies that by scanning the grating
beam frequency over the Fano states and detecting the co-
herent beam that emerges from the downward transition
ue&→u i &, profiles identical to those shown in Fig. 5~a! for the
nonparametric process are obtained.

In this scheme, one can also fix the grating beam fre-
quency and scan the probe laser to obtain a TC-RFWM spec-
trum. This is the case shown in Fig. 8. The profiles shown
are obtained by scanningdp though zero, that is, by scanning

vp acrossvei , for different values ofjg , which in this case
is treated as an experimental parameter. Line profiles for
r 50, q50, andq51.5 are shown. Although the detected
signal arises from a bound-to-bound transition, because of
the presence of quasibound states in the overall FWM pro-
cess, the profile is non-Lorentzian for all values ofjg , q,
and r . This behavior is in contrast to the TC-RFWM line
shapes involving only bound states, which can be shown to
be Lorentzian, as discussed by Williams and co-workers
@21#. The profiles in Fig. 8 are also unlike the line profiles
that would be observed by directly probing the transition
ue&→u i & by means of a linear technique.

Both sets of profiles in Fig. 8 show the effect of tuning the
grating beams to different frequencies within the manifold of
Fano states. The effect consists of both a shift in the peak
energy of the profile and a variation of the profile width. In
the case ofq50, for example, the line profile in Eq.~22! can
be written as

FIG. 6. TC-RFWM profiles for the nonparametric process de-
picted in Fig. 2 for several values ofr[pu /pc . ~a! q50 and~b!
q510.

FIG. 7. Comparison of~a! TC-RFWM profiles for the nonpara-
metric process and~b! Fano profiles with fixedq51.5 and different
values ofr[pu /pc .
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I~dp ;jg!5
1

~dp
221!214dp

2

11~jg1dp!2

~jg1dp!214
. ~25!

According to Eq.~25!, both forjg50 and asymptotically for
ujgu@1, I(dp ;jg) is an even function ofdp . For jg50,
where the process is still resonant, the following non-
Lorentzian profile is obtained:

I~dp ;jg50!5
1

~dp
221!214dp

2

11dp
2

dp
214

.

For other values of the parameterjg , the resulting profile
has no symmetry with respect todp because, as is evident in
Eq. ~25!, the expression forI(dp ;jg) is the product of two
even factors centered ondp50 anddp52jg, respectively.
As jg is changed, it is the shift of the profile peak from
dp50 that is most evident in comparison to the variation in
the width and asymmetry of the line profile. Further, since
I(dp ;jg)5I(2dp ;2jg) in Eq. ~25! the shift of the profile
peak will be in the opposite direction~but of the same mag-
nitude! when switching fromjg to 2jg . Different effects

are observed for profiles withq50. The example ofq51.5
is shown in Fig. 8~b!. For q50, I(dp ;jg) is asymmetric,
even forjg50, and also the magnitude of line shift depends
on the sign ofjg . The plots in Fig. 9 illustrate all of the
above-mentioned effects by showing the overall variation of
the profile induced by changing the grating detuning,jg for
different values of the probe detuningdp .

The dependence of the line profile on the grating detuning
for different values ofq shown in Figs. 8 and 9 suggests that
quasibound states may be investigated in a different way by
measuring the peak shift and the linewidth as a function of
detunings. Since these parameters can be obtained from a fit
of experimental data in a straightforward manner, the para-
metric TC-RFWM scheme represents an alternative and po-
tentially efficient spectroscopic configuration that can take
advantage of coherently controlling the signal line shape by
modifying an experimental input parameter, in this case, the
grating detuningjg .

VI. CONCLUSIONS

A theoretical prediction for the signal line profile ob-
served by probing an isolated, quasibound state by means of
TC-RFWM has been developed. In Sec. III, starting from
first principles, the expression of the electric susceptibility
that applies to this case has been derived. Even though the
derivation has been specifically carried out for a resonant
feature modeled as a configuration-interaction between a
bound and continuum state leading to Eq.~2!, the same pro-
cedure can be applied to any continuum resonance. Only two
phenomenological inputs are needed: an appropriate model
describing the probability of a transition from a lower state
to a continuum resonance as a function of energy and a
qualitative knowledge of the width of the distribution of con-
tinuum states involved. The first input consists of replacing
z^eumnuh) z2 with an appropriate dipole element that may be
available, for example, from a MQDT treatment of a Ryd-
berg series interacting with a continuum@26# or from the
Wigner threshold law@32# for electron-ion photodetachment
or photodissociation-photoassociation processes. The second
input determines the selection of the resonant terms in the
susceptibility. The final step in deriving a function for the
line profile requires the calculation of an integral, which may
be performed by numerical methods, if necessary. Param-
eters of physical interest can then be extracted from mea-
sured line profiles by a fitting procedure. Also, in principle,
numerical deconvolution methods may be implemented to
extract from the observed TC-RFWM spectra an experimen-
tal cross section for particular processes in which no model is
a priori available.

In Secs. IV and V we have performed and discussed an
analytic derivation of the TC-RFWM line profile in the case
of a quasibound state described by a configuration-
interaction. Two possible variations of the doubly resonant
scheme were explored and the results demonstrate the ability
to analyze observed line profiles in terms of the same physi-
cal parameters accessed by traditional linear techniques. Sev-
eral distinctive aspects of the TC-RFWM profiles have been
pointed out by comparing these results to the Fano profiles
for quasibound resonances observed with linear spectro-
scopic techniques. Finally, in the parametric scheme, the

FIG. 8. TC-RFWM profiles for the parametric process depicted
in Fig. 2 obtained by scanning the probe detuningdp for different
values of grating detuningjp . ~a! q50 and~b! q51.5.
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possibility of controlling the line shape observed in scanning
the probe frequency by using different grating detunings was
highlighted as a possible approach for probing quasibound
resonances.

ACKNOWLEDGMENT

This work was supported by the National Science Foun-
dation, Grant No. PHY-9623569.

APPENDIX A: DIRECTION OF THE PHASE-MATCHED
WAVE VECTOR k s

The direction ofks in Eq. ~14! is uniquely determined by
the phase-matching conditionvs5vp , introduced in Sec.
III B and expressed in terms of wave vectors by Eq.~15!. If
thegrating wave vectorg5 kg1

2kg2
is introduced@17#, Eq.

~15! may be rewritten as

uguS ugu12
vp

c
cosb D50, ~A1!

whereb is the angle betweeng andkp , as shown in Fig. 4.
Equation~A1! has two solutions:g50 ~i.e., kg1

5kg2
), im-

plying ks5kp , and the solution

ugu12
vp

c
cosb50. ~A2!

If ug is the angle betweenkg1
andkg2

, then

ugu52
vg

c
sin

ug

2
~A3!

and Eq.~A2! may be written as

vg sin
ug

2
1vp cosb50. ~A4!

Equation~A4! expresses the phase-matching condition in Eq.
~15! as a geometrical constraint that relates the direction of
incidence of the probe beam to the angleug . Finally, by
calling ups the angle betweenkp andks and substituting Eq.
~A3! into the vectorial identity

uksucosups5ukpu1ugucosb,

Eq. ~A4! may be cast in the form

vg

vp
5

sin
ups

2

sin
ug

2

, ~A5!

FIG. 9. TC-RFWM profiles for the parametric process depicted in Fig. 2 plotted as a function of the probe detuningdp and the grating
detuningjp . ~a! and ~c! 3D plots ofI(jg ,dp) for q50 and 1.5.~b! and ~d! contour plot of the surfaces in~a! and ~c!, respectively.
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which is the well-knownBragg scattering condition@6# used
to establish proper phase matching in laser-induced grating
spectroscopy geometries.

APPENDIX B: EVALUATION OF THE INTEGRAL
IN EQ. „17…

The evaluation of the integral in Eq.~17! may be per-
formed by means of contour integration in the complex
plane. The integration rangeDh is taken over the entire in-
terval (2`,`). This choice, however, requires discussion.
The extension of the integration interval to (2`,`) causes a
divergence in the integral in Eq.~17!. The source of this
unphysical behavior is the assumption that the parameters in
the Fano profile in Eq.~2! are energy independent. This is an
appropriate assumption near resonance forh;0; however,
far from resonance, the Fano profile actually goes to zero
ensuring the expected convergence. This problem of conver-
gence is addressed by calculating the Cauchy principal part
of the integral in Eq.~17! for Dh→(2`,`). This procedure
is sufficient to make the integral converge, which confirms
that the correction with respect to the exact situation may be
thought of as small.

A complex variablez is introduced such thath5Re(z),

the integrand of Eq.~17! is evaluated inz, and three poles of
first order are found:zpole56 i ,jp1 i . The semicircle pathC
shown in Fig. 10 is chosen and the residue theorem is ap-
plied to give the identity

I[PE
2`

`

dh
1

jp2h1 i F pc

~q1h!2

11h2
1puG

522p iRes~2 i !1 lim
R→`

E
2p

0 ieiudu

2eiu1
jp1 i

R

3F pc

S q

R1eiuD 2

1

R2
1ei2u

1puG . ~B1!

Here P indicates a principal-part integral,R is the radius of
C, and Res(2 i ) is the residue of the integrand inz52 i .
The final result is

I 5
~q212r 11!2 i @2q1~11r !jp#

jp12i
. ~B2!

By calculating the absolute square ofI of Eq. ~B2! the signal
intensity in Eq.~18! is obtained. As long asDh is a symmet-
ric interval with respect toh50, the transformation
$q→2q,jp→2jp ,h→2h% applied to Eq.~B1! results inI
becoming2I * and thus this transformation does not affect
the calculation ofuI u2. This behavior explains the mirror
symmetry for the profiles with oppositeq discussed in Sec.
IV.

Finally, the integral in Eq.~21! may be evaluated in an
identical manner by substituting (jg1dp) for jp in Eq. ~B1!
and by using the same the integration procedure described
above.
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