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The effect of laser bandwidth on the signal detected in two-color, resonant
four-wave mixing spectroscopy

F. Di Teodoro and E. F. McCormack
Bryn Mawr College, Bryn Mawr, Pennsylvania 19010

~Received 4 November 1998; accepted 8 February 1999!

The effect of laser line shape and bandwidth on the signal detected in two-color, resonant four-wave
mixing ~TC-RFWM! spectroscopy is determined by means of anab initio calculation of the
third-order polarization based on diagrammatic perturbation theory. Modifications to the approach
previously used for the case ofd-function laser line shapes are made by introducing a different
treatment of the rotating wave approximation and phase-matching conditions. A three-level
excitation scheme for double-resonance spectroscopy of bound and quasibound states is analyzed.
In the case of Lorentzian laser line shapes, analytic expressions for the signal line profile are
obtained for each excitation scheme. Analytic approximations of the signal line profile are also
obtained in the case of Gaussian laser line shapes. ©1999 American Institute of Physics.
@S0021-9606~99!01917-0#

I. INTRODUCTION

As reported by several informative review papers,1–5

resonant four-wave mixing~RFWM! is a nonlinear optical
technique that, in recent years, has been successfully applied
to a wide variety of investigations in atomic and molecular
physics including combustion and plasma diagnostic and
high-resolution, gas-phase spectroscopy. Four-wave mixing
spectroscopy is based upon the interaction of three laser
beams in a medium of interest to produce a nonlinear polar-
ization via the third-order term of the electric susceptibility
(x (3)).6 The induced polarization is the source of a fourth,
coherent light beam that is radiated from the medium and
detected as the signal. The spectroscopic capabilities of the
process rely in the dramatic signal enhancement occurring
whenever the frequency of the incident laser beams is reso-
nant with a transition in the medium; spectra can be ob-
tained, therefore, by frequency-scanning the input laser
beams over selected resonances. When two optical fields
have frequencies resonant with two different transitions the
resulting four-wave mixing process is called two-color-
RFWM ~TC-RFWM!. TC-RFWM can offer distinct advan-
tages over linear spectroscopic techniques for studying struc-
ture and dynamics of atomic and molecular systems. Indeed,
since the signal generation is based solely upon absorption,
TC-RFWM can detect any excited state regardless of its de-
cay mode~pre- or photodissociation, autoionization, fluores-
cence, and internal energy-conversion!. Further, the highly
directional and coherent nature of the signal permits efficient
rejection of background source emission and scattered laser
light leading to favorable signal to noise ratios. Also, high
spectral, spatial, and temporal sensitivity can be obtained for
a range of pressures and number densities and low detection
limits in the range of 109– 1012 molecules cm23 per quantum
state have been observed.7 A distinctive characteristic of TC-
RFWM is that, being a doubly-resonant spectroscopic
scheme, it is particularly amenable to state selection.8 These

attributes have led to successful application of TC-RFWM to
the study of numerous stable and transient species.8–22

Diagrammatic perturbation theory~DPT! has proven to
be a very effective tool in analyzing the spectra obtained in
gas-phase TC-RFWM. Analytic expressions for the signal
line profile have been reported for a variety of TC-RFWM
schemes used in double-resonance spectroscopy of bound23

and quasibound24 molecular states. However, the application
of DPT has been carried out, so far, by assuming ideal ex-
perimental conditions.23 Saturation effects arising from the
utilization of high-intensity lasers are, for example, not ac-
counted for by this theory. Neither are nonlinear phenomena
such as the formation of nonresonant, laser-induced
thermal,25 acoustic13 or electrostrictive26 gratings consisting
of modulations in the real part of the refractive index that
occur, in relatively high-density media, as a result of the
optical interference of intense laser beams.27 In addition,
when the Doppler effect is taken into account, the single-
molecule contribution tox (3), explicitly calculated by DPT,
must be integrated over the velocity distribution of the ab-
sorbing molecules and, as a consequence, the analytic char-
acter of the signal line profile is lost.23 Finally, no attempt
has been made to include in the DPT model the effect of
finite laser bandwidths.

Many of these theoretical limitations, however, do not
represent a real problem for the interpretation of the ob-
served spectra provided that the experimental conditions are
carefully selected and monitored. Indeed, saturation can be
avoided as long as the signal is found to be proportional to
the intensity of the probe laser and to the squared intensity of
the grating laser16 and significant signal to noise ratios have
been achieved in unsaturated conditions.10 Further, perform-
ing TC-RFWM in low-pressure, collision-free environments
such as supersonic molecular beams leads to a strong reduc-
tion of the excited-state collisional relaxation rate so that the
rate of single-molecule decay processes~such as autoioniza-
tion, dissociation, isomerization! can be obtained from the
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observed spectral lines without the need of any modification
to the DPT treatment. In addition, Butenhoffet al.10 have
shown that the nonresonant background signal originating
from thermal and acoustic gratings and other pressure effects
is practically eliminated as a consequence of the low number
density characterizing the molecular beam. Thermal and
electrostrictive gratings can be avoided by using input laser
beams set up to have polarizations orthogonal to one
another.28 Also, TC-RFWM geometries can be tailored to
drastically reduce the first-order Doppler effect.29

The effect of laser line shape and bandwidth on the sig-
nal profile, however, cannot be easily experimentally circum-
vented as gas-phase, TC-RFWM spectroscopy is usually per-
formed by utilizing laser-pumped, pulsed dye lasers. These
laser sources exhibit a relatively broad line shape determined
by numerous factors such as pulse-to-pulse variations in the
pumping-laser intensity, thermooptical effects on the dye cell
exposed to the pumping light, cavity longitudinal mode com-
petition, mechanical instabilities of the cavity, and~when
used! nonlinear frequency doubling of the final laser output
in birefringent crystals. These phenomena cause frequency
chirp and stochastic fluctuations of the phase and amplitude
of the optical field resulting in typical bandwidths of
0.1– 0.01 cm21,8–16,18–20a value comparable to molecular
transition widths in many situations of interest. Also, de-
pending on the characteristics of the pumping laser and the
active medium as well as on the optical resonator design, the
dye-laser line shape may either appear as a sharp peak cen-
tered at the selected frequency or, in the opposite extreme,
show a significant, irregularly structured background pro-
duced by amplified fluorescence. Suitable mathematical
models for the different line shapes are either Lorentzian or
Gaussian functions; the choice between the two functions
being dictated by the statistical properties of the light-
generating process. A Lorentzian line shape is appropriate
when all fluctuations and relaxation processes are Markovian
in nature thereby having exponential temporal autocorrela-
tion and obeying Langevin dynamical equations, while a
Gaussian line shape adequately describes the non-Markovian
case~frequently termed also ‘‘nonimpact limit’’30! that char-
acterizes short-pulse lasers. From a spectroscopic point of
view, the distinction between the two line-shape models is
very relevant and may lead to different predictions for the
signal spectral profile. In the case of Lorentzian line shapes,
resonant photons may be absorbed by the medium from the
wings of the laser line shape resulting in non-negligible in-
coherent contributions to the excitation of a given state even
for large center-line detunings from the corresponding tran-
sition frequency.31 Conversely, a laser with a line shape fall-
ing off faster than a Lorentzian~for example, a Gaussian line
shape! is expected to appear substantially monochromatic to
the medium while tuned out of resonance. It is therefore
important to treat the two cases separately, even though, in
practice, determining which case applies to a specific laser
can be a difficult task, especially for pulsed lasers.

A time-domain analysis of the effect of laser line shape
and bandwidth on the RFWM signal profile has been carried
out by Smith and co-workers32,33 in the specific case of de-
generate four-wave mixing, namely, an implementation of

RFWM in which all optical fields have the same frequency.
This analysis consisted of integrating the rate equations for
the material density matrix with the assumption that the input
laser fields are incoherent, uncorrelated, and statistically in-
dependent~chaotic! Markovian fields characterized by a
Lorentzian line shape with a bandwidth much larger than the
characteristic widths of all processes governing the dynamics
of the material system.34 Note that in the TC-RFWM experi-
ments considered here, however, spectra are obtained by fre-
quency scanning one of the input laser beams~the probe, as
explained below! over selected resonant features, while the
analysis in Refs. 32,33 is concerned with the line shape of
the four-wave mixing signal radiating from a medium ex-
cited by a fixed frequency, broadband laser. In addition, we
present a markedly distinct computational approach to the
problem. The contribution of the laser bandwidth to the TC-
RFWM signal profile is determined by a full frequency-
domain calculation based on DPT and formulated as an ex-
tension of the theory presented in Refs. 23,24. Both
Lorentzian and Gaussian line shapes are discussed with no
assumption on the relative laser bandwidth and transition
widths and the theoretical treatment addresses three-level
systems featuring either discrete or quasibound states.

The remainder of this paper is organized as follows. In
Sec. II we derive the intensity of the TC-RFWM signal
emerging from a three-level system excited by finite-
bandwidth input lasers with a generic line shape. In Sec.
II A 1 the general expression of the third-order polarization is
recalled; in Sec. II A 2 the geometric aspects of the four-
wave mixing process involving finite-bandwidth lasers are
discussed; and in Sec. II A 3 the application of the rotating
wave approximation, which extracts the resonant part of the
electric susceptibility, is carried out for an excitation scheme
featuring three discrete states. Details of the derivation of the
signal beam intensity and direction are presented in Appen-
dix A, while, in Appendix B, we show that the signal is
affected only by the line shape of the probe laser which is
frequency-scanned over a given transition. In Sec. II B the
calculations of Sec. II A are adapted to a three-level system
featuring a quasibound state. In Sec. III explicit expressions
for the signal profile are obtained by modeling the probe
laser line shape as a Lorentzian and a Gaussian function.
Computational details are shown in Appendix C. Finally, in
Sec. IV we summarize our results.

II. THEORY

A. Discrete states

The excitation scheme that will be considered in this
section is depicted in Fig. 1~a!. The medium of interest ex-
hibits three relevant discrete energy levels corresponding to
bound states of atoms or molecules. The three levels are
arranged in a ‘‘cascade’’ configuration, which is particularly
suitable for spectroscopy of highly-excited states such as Ry-
dberg states. Only straightforward computational modifica-
tions, however, are necessary to adapt the theoretical treat-
ment developed below to different excitation schemes, a list
of which is presented in Ref. 23.

8370 J. Chem. Phys., Vol. 110, No. 17, 1 May 1999 F. Di Teodoro and E. F. McCormack

Downloaded 13 Feb 2012 to 165.106.1.42. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



1. Polarization

The optical field at a given pointr and timet, E(r ,t),
associated with the laser beam detected as the signal in a
TC-RFWM process is, neglecting dispersion, given by the
wave equation35

¹2E~r ,t !5
4p

c2

]2P~3!~r ,t !

]t2
1

1

c2

]2E~r ,t !

]t2
, ~1!

whereP(3)(r ,t) is the third-order polarization induced in the
medium by the incident fields. The polarization is nonzero

only for ur u,V, whereV is the volume of the region occu-
pied by the medium. Assuming that all incident fields are
linearly polarized along a common direction in the labora-
tory reference frame and that the particles forming the ab-
sorbing medium have negligible intrinsic dipoles, the only
significant component ofP(3)(r ,t) is the one parallel to the
polarization direction of the incident fields and is given by

P~3!~r ,t !5
1

~2p!12E dk1E dk2E dk3E
2`

`

dv3E
2`

`

dv2

3E
2`

`

dv1x~3!~v3 ,v2 ,v1!E~k3 ,v3!

3E~k2 ,v2!E~k1 ,v1!exp~2 ivst1 iks•r !. ~2!

Here, the numerical indices identify the time ordering so that
E(km ,vm) is the space–time Fourier transform of themth
optical field interacting with the medium and the abbrevia-
tionsvs5v31v21v1 andks5k31k21k1 have been used.

The expression of the third-order, scalar electric suscep-
tibility x (3)(v3 ,v2 ,v1) is obtained by adapting the general
expression of Ref. 36 to the excitation scheme of Fig. 1~a!.
By assuming that the thermal equilibrium population of all
matter states is negligible except for the lowest stateu i &, we
obtain

x~3!~v3 ,v2 ,v1!52
r i i

0N

6\3 (
perm

(
abc5 i ,e, f

^ i umua&^aumub&^bumuc&^cumu i &@G cb~v31v21v1!G ca~v21v1!G ci~v1!

1G cb~v31v21v1!G ca~v21v1!G ia~v1!1G cb~v31v21v1!G ib~v21v1!G ia~v1!1G ai~v31v2

1v1!G bi~v21v1!G ci~v1!2G cb~v31v21v1!G db~v21v1!G ia~v1!2G ba~v31v21v1!G ca~v2

1v1!G ci~v1!2G ba~v31v21v1!G bi~v21v1!G ci~v1!2G ic~v31v21v1!G ib~v21v1!G ia~v1!#,

~3!

where r i i
0 is the diagonal element of the material density

matrix corresponding to the thermal-equilibrium population
of the stateu i & andN is the number density of the medium.
The first summation accounts for the six possible permuta-
tions of v1 , v2 , and v3 while a, b, and c in the second
summation are matter state indices which may take as values
‘‘ i,’’ ‘‘ e,’’ or ‘‘ f.’’ In addition, m is the component of the
single-particle dipole operator along the common polariza-
tion direction of the incident fields and, in the square brack-
ets, eight triple products of Green propagators account for
the eight possible pathways of the three-step excitation of the
medium in the four-wave mixing process.36 Each of these
Green propagators is given byG ab(v)5(v2vab

1 iGab)
21, where v5v1 , v21v1 , or v31v21v1 ;

\uvabu is the energy gap between statesua& and ub& (vab

52vba); and, Gab is the average decay rate of statesua&
and ub&.23

2. Incident fields

The TC-RFWM schemes are often interpreted in terms
of the formation of and the scattering from laser-induced
gratings. The interference of two nearly copropagating
pulsed laser beams overlapped at a small crossing angle in a
medium and resonant with an energy transition produces a
modulation of the optical properties of the medium that con-
stitutes a diffraction grating. Thus, a third beam, delayed in
time with respect to the previous ones, is scattered off such a
laser-induced grating and the scattered beam is detected as
the four-wave mixing signal. According to the nomenclature
traditionally used in this description, the first two beams are
labeled asgrating beamsand the third beam is labeled as the
probe beam. The grating beams, with center-line frequency
vg , are tuned upon the transitionu i &→ue& while the probe-
beam, whose center-line frequency isvp , is delayed in time

FIG. 1. Excitation schemes discussed in the text;~a! a three-level system
with only discrete states and~b! a three-level system in which the highest
level is a quasibound state.
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with respect to the grating beams and frequency-tuned to
scan over the transitionue&→u f &.

The incident fields considered in this paper are ad-
equately described as nonmonochromatic, unidirectional

wave packets. Hence, assuming the same linear polarization
for all laser beams and neglecting dispersion, the Fourier-
transformed optical fieldsE(k3 ,v3), E(k2 ,v2), and
E(k1 ,v1) have the form

E~k1 ,v1!5E g
2d~k12 v1 /c!

k1
2

d~ k̂12k̂g1!g~v12vg ,Dg!1E g*
2d~k12 v1 /c!

k1
2

d~ k̂11k̂g1!g~v11vg ,Dg!,

E~k2 ,v2!5E g
2d~k22 v2 /c!

k2
2

d~ k̂22k̂g2!g~v22vg ,Dg!1E g*
2d~k22 v2 /c!

k2
2

d~ k̂21k̂g2!g~v21vg ,Dg!, ~4!

E~k3 ,v3!5E p
2d~k32 v3 /c!

k3
2

d~ k̂32k̂p!p~v32vp ,Dp!1E p*
2d~k32 v3 /c!

k3
2

d~ k̂31k̂p!p~v31vp ,Dp!,

whereE g andE p are the complex amplitudes of the grating
and probe beams, respectively, and the wave vectorskm (m
51,2,3) have been written askm5kmk̂m , wherekm is the
magnitude of the wave vector andk̂m is a unit vector in
momentum space oriented along the direction ofkm . Fur-
ther, k̂g1 , k̂g2 are unit vectors parallel to the propagation
direction of the grating beams andk̂p is a unit vector parallel
to the propagation direction of the probe beam. The func-
tions g andp in Eq. ~4! represent the spectral profile of the
grating and probe beams, respectively. The functionsg(v1

6vg ,Dg) and p(v36vp ,Dp) are centered at7vg and

7vp , respectively, with characteristic bandwidthsDg and
Dp . The integration overk1 , k2 , andk3 in Eq. ~2! may be
immediately performed by introducing spherical coordinates
in momentum space

E dkm5E
0

`

km
2 dkmE dk̂m , ~5!

where, again,m51,2,3 and the integral overk̂m is extended
to the entire solid angle in momentum space. Substituting
Eq. ~4! into Eq. ~2! and making use of Eq.~5! yields

P~3!~r ,t !5
1

~2p!12E2`

`

dv3E
2`

`

dv2E
2`

`

dv1x~3!~v3 ,v2 ,v1!exp~2 ivst !FE pp~v32vp ,Dp!expS i
v3

c
k̂p•r D

1E p* p~v31vp ,Dp!expS 2 i
v3

c
k̂p•r D GFE gg~v22vg ,Dg!expS i

v2

c
k̂g2•r D1E g* g~v21vg ,Dg!

3expS 2 i
v2

c
k̂g2•r D GFE gg~v12vg ,Dg!expS i

v1

c
k̂g1•r D1E g* g~v11vg ,Dg!expS 2 i

v1

c
k̂g1•r D G . ~6!

As shown in Appendix A, if the input fields were per-
fectly monochromatic, i.e., if the functionsp andg in Eq. ~6!
were replaced byd-functions centered onvp and vg , re-
spectively, the induced polarization oscillating at frequency
vp could be written as a plane wave propagating along the
direction illustrated in Fig. 2~a! and specified by Eq.~A10!.
Since the input fields have finite spectral bandwidths, how-
ever, the induced polarization resulting from Eq.~6! should
be described as a nonmonochromatic wave packet. The func-
tionsp andg peak atvp andvg and then fall rapidly to zero
outside the bandwidth range, such that the wave packet has a
maximum amplitude at the angle given by Eq.~A10!. Unlike
the unidirectional input fields, however, it exhibits a geo-
metrical spread around this angle. This spread is because the

wave vectors embedded in each of the input-field wave pack-
ets, oriented along a well defined direction but with different
magnitudes, combine vectorially in the mixing process as
illustrated in Fig. 2~b!. Simple geometry, however, shows
that the typical angular dispersion,Du, of the polarization
wave packet is roughly on the order of (Dg1Dp)/(vg

1vp) which givesDu!1 for realistic laser sources. The
phase-matched TC-RFWM signal beam has the same spatial
characteristics of the induced polarization~see Appendix A!
and exhibits, therefore, the same angular dispersionDu. The
angular acceptance of the detector used to collect the four-
wave mixing signal is far too large to resolveDu and, as a
result, the observed signal is equivalent to that from a plane
wave propagating along the direction given by the angle in
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Eq. ~A10!. Accordingly, we assume that the spatial charac-
teristics of the mixing process, namely the orientation of the
laser-induced grating and the direction of the light scattered
off from this grating, can be adequately described, as in the

case of d-function laser beams, by associating only the
‘‘center-line’’ wave vectors (vg /c) k̂g1,2 and (vp /c) k̂p with
the grating and probe beams, respectively. This allows us to
rewrite Eq.~6! as

P~3!~r ,t !5
1

~2p!12E2`

`

dv3E
2`

`

dv2E
2`

`

dv1x~3!~v3 ,v2 ,v1!exp~2 ivst !FE pp~v32vp ,Dp!expS i
vp

c
k̂p•r D

1E p* p~v31vp ,Dp!expS 2 i
vp

c
k̂p•r D GFE gg~v22vg ,Dg!expS i

vg

c
k̂g2•r D1E g* g~v21vg ,Dg!

3expS 2 i
vg

c
k̂g2•r D GFE gg~v12vg ,Dg!expS i

vg

c
k̂g1•r D1E g* g~v12vg ,Dg!expS 2 i

vg

c
k̂g1•r D G . ~7!

3. Rotating-wave approximation

The evaluation of the triple frequency-integral in Eq.~7!
can be performed by using the rotating wave approximation
~RWA! to extract the resonant susceptibility terms from Eq.
~3!. The application of the RWA can be simplified by using
the double-sided~DS! Feynman diagram formalism.36 Only
the two diagrams depicted in Fig. 3 are needed to properly
describe the excitation scheme of Fig. 1~a! and their physical
meaning can be described as follows. Initially, negligible
population characterizes all states other thanu i &. The
thermal-equilibrium material density operator isr i i

0 u i &^ i u,
such that the first interaction is the absorptionu i &→ue&
stimulated by the grating beams that create the coherences
reiue&^ i u and r ieu i &^eu. The second interaction is again the
absorptionu i &→ue& and the third interaction is the absorption
ue&→u f &. Only the two time-orderings are needed to de-
scribe the TC-RFWM scheme under examination because
the probe beam, which is frequency-tuned on the transition
ue&→u f &, is temporally delayed with respect to the grating
light pulses and will affect the mixing process only after the
grating light pulses, which are tuned on the transitionu i &
→ue&, interact with the medium. In addition, even though
the input lasers have finite bandwidths, the optical fields,
once frequency-tuned on a specific transition of the excita-
tion scheme of Fig. 1~a!, are not spectrally broad enough to
interact with the other transition as long as the inequalities

Dg!uvg2vpu,

Dp!uvg2vpu, ~8!

hold. Thus, the two grating beams in the mixing process
generate the populationreeue&^eu that exhibits spatial modu-
lation perpendicular to the directions6(vg /c)( k̂g12 k̂g2).
After the delay time, the probe beam interacts with the me-
dium by exciting the transitionue&→u f & such that the coher-
encesr f eu f &^eu and re fue&^ f u are created. This implies, ac-
cording to Eq.~7!, that the induced polarization will consist
of only two terms characterized by the spatial-phase factors
exp(iks•r ) and exp(iks8•r ), where

ks5~vp /c!k̂p1~vg /c!~ k̂g12 k̂g2!,

ks85~vp /c!k̂p2~vg /c!~ k̂g12 k̂g2!.

As shown in Appendix A, however, the frequency phase-
matching condition uksu.vp /c uniquely determines the
wave vector and only the coherencer f eu f &^eu will contrib-
ute.

The resonant part of the third-order susceptibility, repre-
sented by the two DS Feynman diagrams depicted in Fig. 3,
is given by

x~3!~v3 ,v2 ,v1!

5Su^ i umue&u2u^eumu f &u2
1

v32v f e1 iG f e

3S 1

v12vei1 iGei
1

1

2v11vei1 iGei
D , ~9!

whereS[(r i i
0N)/(6i\3Gee). Thus, Eq.~7! can be written as

P~3!~r ,t !

5P exp~ iks•r !E
2`

`

dv3E
2`

`

dv2E
2`

`

dv1exp~2 ivst !

3H p~v32vp ,Dp!g~v21vg ,Dg!g~v12vg ,Dg!

~v32v f e1 iG f e!~v12vei1 iGei!

1
p~v32vp ,Dp!g~v22vg ,Dg!g~v11vg ,Dg!

~v32v f e1 iG f e!~2v11vei1 iGei!
J ,

~10!

where P[@S/(2p)12#E puE gu2u^ i umue&u2u^eumu f &u2. As
shown in Appendix B, the double integration overv1 andv2

can be carried out at this point and it does not affect the line
profile of the detected signal. Next, by assuming that the
signal is detected at the origin of the reference frame, i.e.,
r50, the Fourier transform of the polarization can be ex-
pressed as

P~3!~r ,v!5
P

Gei
exp~ iks•r !

p~v2vp ,Dp!

~v2v f e1 iG f e!
, ~11!
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where the numerical frequency-index has been dropped for
simplicity. And finally, as shown in Appendix A, the inten-
sity I of the detected signal for the excitation scheme de-
picted in Fig. 1~a! is given by

I 5
uPu2L2v f e

2

8pGei
2 c

U E
2`

`

dv
p~v2vp ,Dp!

~v2v f e1 iG f e!
U2

, ~12!

whereL is the length of the path of the output beam through
the medium.

B. Quasibound resonances

1. Configuration-interaction theory

Quasibound states arise from the interaction of discrete
and continuum states of atoms and molecules and occur, for
example, in phenomena such as autoionization and predisso-
ciation. The mixed nature of quasibound states can result in
asymmetric resonant features in measurements of photoemis-
sion, photoabsorption, photodetachment, and photofragmen-
tation due to competing processes that govern the decay dy-
namics of the various states. The interaction of a single,
isolated discrete level with a single continuum can often be
described by a configuration-interaction~CI! treatment37 and
this model will be adopted here. The stateuQB& can undergo
autoionization or predissociation by decaying into an ioniza-
tion or dissociation continuum with a rateG much larger
than the decay rates of ordinary bound states. In the CI treat-
ment, neitheruQB& nor the interacting continuum are exact
eigenstates of the field-free Hamiltonian. The Hamiltonian is,
instead, diagonalized by a continuous manifold of mixed
states called Fano states.37,38 A Fano state is indicated here-
after by uh), with the reduced-energy indexh defined as

h5
vhe2vQB

G/2
, ~13!

where\vhe is the energy separation between the Fano state
and the intermediate stateue&, and\vQB is the energy sepa-
ration between the quasibound stateuQB& and ue& plus a
small energy shift that depends onG and is often negligible.
The spectral density of the dipole transition probability for
photoexcitationue&→uh) is then given by

u^eumuh!u25pc

~q1h!2

11h2
1pu , ~14!

wherepc is the probability of direct photoionization~or pho-
todissociation! into the CI continuum,pu is the probability of
transitions to other continua uncoupled to the quasibound
state, andq is the asymmetry parameter.38 The values ofpc ,
q, pu , andG may be considered to be nearlyh-independent
for a range of values abouth50 and treated as fitting
parameters.37

2. Polarization

The excitation scheme to be considered here is depicted
in Fig. 1~b! and is characterized by the presence of the con-
tinuous manifold of Fano statesuh) in place of the bound

stateu f &. The expression of the third-order susceptibility is
obtained by summing the contributions of all Fano states,24

i.e., integrating Eq.~9! over h to give

x~3!~v3 ,v2 ,v1!

5Su^ i umue&u2E
2`

`

dhu^eumuh!u2F 1

v32vhe1 iG/2

3S 1

v12vei1 iGei
1

1

2v11vei1 iGei
D G , ~15!

where the approximationGhe.G/2 has been used, sinceG,
the decay rate of each Fano stateuh), is taken to be much
larger than the decay rate of the intermediate stateue&. In
light of Eq. ~15!, Eq. ~11! becomes

P~3!~r ,v!5
SE puE gu2u^ i umue&u2

~2p!12Gei

exp~ iks•r !

3E
2`

`

dhF ~q1h!2

11h2
1r G p~v2vp ,Dp!

~v2vhe1 iG/2!
,

~16!

wherer 5pu /pc . As shown in Appendix A, the intensity of
the detected TC-RFWM signal for the excitation scheme de-
picted in Fig. 1~b! is then given by

I 5
uSu2uE pu2uE gu4u^ i umue&u4

~2p!12Gei
2

L2vQB
2

8pc

3 U E
2`

`

dvE
2`

`

dhF ~q1h!2

11h2
1r G p~v2vp ,Dp!

~v2vhe1 iG/2!U
2

.

~17!

This result is analogous to Eq.~12! that applies to the exci-
tation scheme of Fig. 1~b! for discrete states.

III. RESULTS AND DISCUSSION

A. Discrete states

1. Lorentzian line shape for the probe beam

In the case of probe beam with a Lorentzian line shape,
the explicit expression forp(v2vp ,Dp) is

p~v2vp ,Dp!5
1

2p

Dp

~v2vp!21~Dp/2!2
, ~18!

whereDp is the full-width at half-maximum~FWHM!. Thus,
by introducing the reduced quantities

z[
v2v f e

G f e/2
,

zp[
vp2v f e

G f e/2
, ~19!

b[
Dp

G f e
.

Equation~12! can be rewritten as
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I 5
uPu2L2v f e

2

8pcGei
2

4

p2

Dp
2

G f e
4
I~zp!, ~20!

whereI(zp) is the signal line profile given by

I~zp!5U E
2`

` dz

@~z2zp!21b2#~z12i !
U2

. ~21!

The integral in Eq.~21! may be evaluated as shown in Ap-
pendix C and the final result is

I~zp!5
p2

b2

1

zp
21~b12!2

. ~22!

2. Gaussian line shape for the probe beam

By assuming that the probe beam has a Gaussian line
shape given by

p~v2vp ,Dp!5
2Aln 2

DpAp
expF2

ln 16

Dp
2 ~v2vp!2G , ~23!

whereDp is the FWHM, and making use again of Eqs.~19!,
Eq. ~12! can be written as

I 5
uPu2L2v f e

2

8pcGei
2

2Aln 2

DpAp
I~zp!, ~24!

whereI(zp) is the signal line profile given by

I~zp!5H E
2`

`

dz expF2
ln 2

b2
~z2zp!2G z

z214
J 2

14H E
2`

`

dz expF2
ln 2

b2
~z2zp!2G 1

z214
J 2

.

~25!

While the integrals in Eq.~25! cannot be evaluated analyti-
cally, the exponentials in Eq.~25! can be Taylor-expanded
around the center-line frequency with the integration interval
set to coincide with the bandwidth of the probe laser and
analytic results can be obtained for every order of expansion.
This procedure will provide fitting functions to analyze ob-
served spectra. The approximation is expected to be adequate
as long asDp /G f e,1, i.e., when the probe laser bandwidth,
albeit non-negligible, is significantly smaller than the aver-
age width of the excited statesue& and u f &. Note that the
lowest-order term of the Taylor expansion approximates the
probe laser line shapep(v2vp ,Dp) as a ‘‘box’’ function of
width Dp ,

p~v2vp ,Dp!5H Dp
21 for uv2vpu<Dp/2

0 for uv2vpu.Dp/2
. ~26!

Substituting Eq.~26! into Eq. ~12! and making use of Eqs.
~19! yields

I 5
uPu2L2v f e

2

8pcGei
2

1

Dp
2
I~zp!, ~27!

whereI(zp) is the signal line profile given by

I~zp!5U E
zp2b

zp1b 1

z12i
dzU2

, ~28!

which, according to Eqs.~C4!, ~C5!, and ~C6! of Appendix
C, can be written as

I~zp!5arctanh2
2bzp

41zp
21b2

1arctan2
4b

41zp
22b2

. ~29!

3. Discussion

In Figs. 4~a! and 4~b!, the normalized signal line profiles
I(zp) given by Eqs.~22! and ~29!, respectively, are plotted

FIG. 2. Wave vector diagrams illustrating the phase-matching condition for
the TC-RFWM scheme under consideration.~a! The case ofd-function
input laser beams, where the vectorg, called thegrating vector, is given by
kg12kg2 . ~b! The same as~a! for the case of finite-bandwidth input laser
beams. The wave vectors associated with the different plane-wave compo-
nents of the input laser beams can fall at any point between the tip of the
solid vector and the tip of the dashed one~the distance between the tips of
solid and dashed vectors is exaggerated for illustrative purposes!. The gray
areas symbolize the resulting angular spreads associated with the grating
vector (Df) and the propagation direction of the detected signal (Du).

FIG. 3. Double-sided Feynman diagrams representing the resonant terms of
the electric susceptibility in the TC-RFWM schemes under consideration.
The final state can be either the discrete stateu f & or the Fano stateuh). In
the latter case, the effective susceptibility is obtained by replicating the
diagrams for everyh.
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in units ofG f e/2 for different values of the parameterb. The
main aspect of the graphs is that the larger the contribution
of the far wings of the probe laser line shape, the higher the
sensitivity of the signal profile to the probe laser bandwidth.
In order to quantitatively show this aspect, the FWHM of the
signal profile obtained in the case of a Lorentzian, Eq.~22!,
and a boxlike, Eq.~29!, probe laser line shape are plotted vs
b in Fig. 4~c!. By rewriting Eq.~22! in unreduced variables,
we obtain

I~vp!5
1

~G f e/2!2

1

~vp2v f e!
21@~Dp/2! 1G f e#

2
. ~30!

From Eq. ~30!, it is seen that, in the case of a Lorentzian
probe laser line shape, the signal profile is also a Lorentzian
with a FWHM given byDp12G f e . If the decay rateG f of
the stateu f & is much larger than the decay rate ofue&, then
G f e.G f /2 and the FWHM of the signal profile will beDp

1g f , i.e., the sum of the probe-laser bandwidth and the
excited state width.

The resulting signal profile is the same as that obtained
when the transitionue&↔u f & is probed by means of a linear
photoabsorption technique, under the assumption that both
transition and probing-laser line shape are Lorentzian.39 Al-
though Eq.~30! has been used previously to analyze experi-
mental data,16 to the best of our knowledge it is rigorously
derived here for the first time for the specific case of TC-
RFWM. Observe that, forb@1, i.e., when the probe laser
bandwidth largely exceeds the transition width, the observed
signal profile is simply given by the probe laser line shape as
expected. Forb'0, the signal profile becomes

I~zp!.
1

zp
214

, ~31!

which corresponds to the TC-RFWM line profile obtained
when assuming monochromaticd-like lasers.18

Evaluating the limits for the Gaussian probe laser line
shape is more complicated. Indeed, while linear techniques
would give rise to a signal profile described by a Voigt pro-
file thereby allowing for the extraction of the transition
width,40 no analytic method is available to deconvolve the
first folding integral in Eq.~25! for the TC-RFWM line pro-
file. The analytic box-function approximation of the signal
profile provided by Eq.~29! yields, however, a valuable and
simple method to obtain a direct interpretation of the trends.
To test the reliability of this approximation, the signal profile
arising from Eq.~29! has been normalized and plotted in Fig.
5 for different values of the parameterb, together with the
exact profiles obtained by numerical integration and normal-
ization of the expression in Eq.~25!. The two profiles show
excellent agreement up tob'1. Both the line profile in Eq.
~22! and the line profile given by Eq.~26! converge, as one
would expect, to the Lorentzian profile in Eq.~31! in the
limit where b→0, where the box function in Eq.~26! is
treated in this limit as a delta function.

B. Quasibound resonances

1. Lorentzian line shape for the probe beam

By letting p(v2vp ,Dp) be a Lorentzian function given
by Eq. ~18! and introducing the reduced variables

j[
v2vQB

G/2
,

jp[
vp2vQB

G/2
, ~32!

s[
Dp

G
,

Eq. ~17! becomes

I 5
uSu2uE pu2uE gu4u^ i umue&u4

~2p!12Gei
2

L2vQB
2

8pc

4

p2

Dp
2

G4
I~jp!,

where the signal line profileI(jp) is given by

FIG. 4. TC-RFWM line profiles obtained from~a! Eq. ~22! and~b! Eq. ~29!,
for different values ofb. ~c! Plot of the full-width at half-maximum
~FWHM! of the profiles given by Eq.~29! ~dashed line! and Eq.~22! ~solid
line! as a function ofb.

8376 J. Chem. Phys., Vol. 110, No. 17, 1 May 1999 F. Di Teodoro and E. F. McCormack

Downloaded 13 Feb 2012 to 165.106.1.42. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



I~jp!5U E
2`

`

dj
1

~j2jp!21s2E2`

`

3dhF ~q1h!2

11h2
1r G 1

~j2h1 i !U
2

. ~33!

The evaluation of the integrals in Eq.~33! may be carried out
as shown in Eq.~C3! of Appendix C to obtain

I~jp!5
p2

s2

@q21r 1~11r !~11s!#21@2q1~11r !jp#2

jp
21~s12!2

.

~34!

2. Gaussian line shape for the probe beam

If p(v2vp ,Dp) is given by the Gaussian function in
Eq. ~23! and by using the reduced quantities in Eqs.~32!, Eq.
~17! becomes

I 5
uSu2uE pu2uE gu4u^ i umue&u4

~2p!12Gei
2

L2vQB
2

8pc

2Aln 2

DpAp
I~jp!,

where

I~jp!5U E
2`

`

dj expF2
ln 2

s2
~j2jp!2G

3E
2`

`

dhF ~q1h!2

11h2
1r G 1

~j2h1 i !U
2

. ~35!

By evaluating the integral overh as shown in Eq.~C2! of
Appendix C, the signal line profile may be written as

I~jp!5H E
2`

`

expF2
ln 2

s2
~j2jp!2G ~q221!j24q

j214
djJ 2

1H E
2`

`

expF2
ln 2

s2
~j2jp!2G

3
~j1q!21r ~j214!1q212

j214
djJ 2

. ~36!

As in the case of Eq.~25!, the integrals in Eq.~36! cannot be
evaluated analytically. By applying the same approximation
introduced in Sec. III A, however, the probe-laser line shape
may be, again, represented by the box function in Eq.~26!
and this procedure results in a signal intensity

I 5
uSu2uE pu2uE gu4u^ i umue&u4

~2p!15Gei
2

L2vQB
2

8pc

1

Dp
2
I~jp!,

where

I~jp!5U E
jp2s

jp1s

djE
2`

`

dhF ~q1h!2

11h2
1r G 1

~j2h1 i !U
2

,

~37!

and from which, as shown in Eqs.~C9! and~C10! of Appen-
dix C, one can write for the signal line profile

I~jp!5F ~q221!arctanh
2sjp

s21jp
214

12q arctan
4s

s22jp
224

G 2

1F ~q221!arctan
4s

s22jp
224

22q arctanh
2sjp

s21jp
214

22~11r !sG 2

. ~38!

3. Discussion

In Fig. 6, the signal line profiles for a Lorentzian laser
line shape, Eq.~34!, and for a Gaussian laser line shape, Eq.
~38!, are plotted in units ofG/2 for three different values of
the Fano parameterq ands along with the line profiles ob-
tained for the same values ofq but in the case of ad-function
probe laser line shape, where the ratio of the probe laser
bandwidth to the Fano states decay rate,s→0. Since a nor-
malization extending over all detunings is not possible be-
cause the expression foru^eumuh)u2 in Eq. ~14! holds only
near resonance and is nonintegrable on a large energy scale,

FIG. 5. Comparison of the profiles given by Eqs.~29! ~solid line! and~25!
~dashed line! for ~a! b50.5, ~b! b51, and~c! b52.
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all of the profiles in Fig. 6 and those in all the other figures
pertaining to this section are normalized by the area under
the curves calculated on an abscissa interval of210 to 10 to
allow for comparisons.24 As is the case for discrete states, the
signal line profile obtained by modeling the probe laser with
a Lorentzian line shape is more sensitive to the laser band-
width than that obtained by modeling the probe laser with a
box function. In Fig. 6, we observe that forq50 @Figs. 6~c!
and 6~d!# and for large values ofq @Figs. 6~e! and 6~f!# the
variation ofs only influences the width of the profiles while,
for intermediate values ofq @Figs. 6~a! and 6~b!#, different
values of s result in significant alterations of the profile
asymmetries so that, overall, neglecting the laser bandwidth
may lead to substantial errors in the estimation of the profile
fitting parametersG, q, andr.

In Fig. 7 the effect of changings is shown to have no
significant consequence on the wings of the line profile,
which are mainly affected byr. This can be understood by
considering that, on resonance, increasings corresponds to
coherently exciting more Fano states while, far from reso-
nance, the line profile is due to theentire set of Fano states
which gives rise, at any value ofjp , to susceptibility terms
with nonvanishing dipoles of the formu^eumuh)u2. In other
words, the off-resonance structure of the line profile reflects

directly the nonlinear nature of the four-wave mixing pro-
cess. In Fig. 8 the line profile obtained by approximating the
laser line shape with a box function is compared, for the
example case ofq51, to the line profiles obtained by evalu-
ating numerically the integrals in Eq.~36!. As in the case of
discrete states, the box-function approximation to the Gauss-
ian line shape is found to be reliable up tos'1, and this
observation holds for different values ofq.

IV. CONCLUSIONS

A theoretical analysis of the effect of the laser line shape
and bandwidth on the signal line profile observed by probing
either discrete or quasibound state by means of TC-RFWM
has been developed. In Sec. II, the third-order polarization
responsible for the generation of the detected signal is de-
rived through anab initio frequency-domain calculation
based on a careful application of the phase-matching condi-
tions and the RWA. In Sec. III, the general expressions for
the signal profile given in Sec. II are explicitly evaluated by
using Lorentzian and Gaussian functions to model the probe
laser line shape. The main results of this paper are the theo-
retical line profiles in Eqs.~22!, ~26!, ~34!, and ~38! which
represent analytic functions that can be used directly as fit-
ting functions for the observed TC-RFWM signal. While
Eqs.~22! and~34!, obtained for the case of Lorentzian probe
laser line shape, are exact, Eqs.~26! and~38! are approxima-
tions obtained by modeling the Gaussian probe laser line
shape as a box function. Such an approximation is shown to
be reliable for ratios between the probe laser bandwidth and
the width of the probed resonant feature that range from;0
to ;1.

FIG. 6. ~a, c, e! Line profiles given by Eq.~34! and ~b, d, f! line profiles
given by Eq.~38! for different values ofs andq, with r 50. ~a, b! q51, ~c,
d! q50, ~e, f! q510.

FIG. 7. ~a! Line profiles given by Eq.~34! and~b! line profiles given by Eq.
~38! for different values ofs and r.
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The line profiles resulting from a Lorentzian probe laser
line shape are shown to behave differently from the line pro-
files obtained by modeling the probe laser line shape as a box
function. This implies that the knowledge of both the band-
width and the line shape of the probe laser is necessary in
order to precisely extract from fits to measured signal line
profiles quantities of physical interest. This information is
particularly important for the case of quasibound states
where differences in the probe laser line shape and band-
width affect not only the width of the resonant feature, but
also its asymmetry and off-resonance pedestal.
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APPENDIX A: DERIVATION OF THE SIGNAL
INTENSITY FROM THE EXPRESSION FOR THE
POLARIZATION

1. Signal intensity for the case of d-function laser
line shapes

Let us assume that the input laser beams haved-function
line shapes. The induced polarization oscillating at frequency

vp is, in this case, obtained by replacing, in Eq.~7!, g(v
6vg ,Dg) and p(v6vp ,Dp) with d(v6vg) and d(v
6vp), respectively, and evaluating the integrals over the
frequencies. The result is

P~3!~r ,t !5@Pd exp~2 ivpt1 iks•r !1Pd exp~2 ivpt

1 iks8•r !#1c.c., ~A1!

where

Pd5
x~3!~vp ,vg ,2vg!E puE gu2

~2p!3
,

ks5
vp

c
k̂p1

vg

c
~ k̂g12 k̂g2!, ~A2!

ks85
vp

c
k̂p2

vg

c
~ k̂g12 k̂g2!.

Note, however, that bothuksu and uks8u should be equal to
vp /c, which is possible only whenk̂g15 k̂g2 and, therefore,
ks5ks85(vp /c) k̂p . If k̂g1Þ k̂g2 , the direction of the polar-
ization wave vector is uniquely determined by the Bragg
scattering condition, as shown in Appendix A of Ref. 24.
The polarizationP(3)(r ,t) can, therefore, be expressed as a
plane wave

P~3!~r ,t !5Pd exp~2 ivpt1 iks•r !1c.c., ~A3!

where ks5(vp /c) k̂p1(vg /c)( k̂g12 k̂g2). By applying the
RWA in the same manner as in Sec. II A 3, the expression of
the susceptibility x (3)(vp ,vg ,2vg) for the excitation
scheme depicted in Fig. 1~a! becomes23

x~3!~vp ,vg ,2vg!

5Su^ i umue&u2u^eumu f &u2
1

vp2v f e1 iG f e

3 S 1

~vg2vei1 iGei!
1

1

~2vg1vei1 iGei!
D . ~A4!

The polarization in Eq.~A3! may be substituted in Eq.~1!
and treated as a source for the optical field of the signal
beam. A solution of Eq.~1! can be obtained in the form of
plane wave as

E~r ,t !5E~z,t !exp~2 ivpt1 i k̃s•r !1c.c., ~A5!

where

z[
k̃s•r

uk̃su
, ~A6a!

uk̃su5
vp

c
.

v f e

c
, ~A6b!

andE(z,t) is a temporally and spatially slowly-varying func-
tion. By substituting Eq.~A5! into Eq. ~1!, the following
differential equation is obtained:

i
v f e

c

]E

]z
522p

v f e
2

c2
Pd exp@ i ~ks2 k̃s!•r #. ~A7!

FIG. 8. Comparison of the line profile given by Eq.~38! ~solid line! and the
line profile given by Eq.~36! for different values ofs; ~a! s50.5, ~b! s
51, ~c! s52.
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Here the slowly varying envelope approximations,

U ]2E

]t2 U!uvpEu2,

~A8!U ]2E

]z2 U!uk̃sE
2,

have been used. By integrating Eq.~A7! over the spatial
extent of the material medium along the direction identified
by k̃s , an explicit expression forE is obtained, thereby al-
lowing us to write the intensityI of the detected signal in the
case ofd-function input laser beams as

I[
c

8p
uEu25

p

2c
L2uv f ePdu2S sinq

q D 2

. ~A9!

In Eq. ~A9! L is the path length through the medium along
the directionk̃s andq[uks2 k̃suL. Since (sinq/q) peaks at
zero, optimal phase matching is achieved forks5 k̃s . These
conditions along with Eq.~A6b! uniquely determine the
propagation direction of the plane wave in Eq.~A5!.

The anglesu between this propagation direction and the
probe beam can be obtained by following the procedure in-
troduced in Appendix A of Ref. 24. This results in

u52 arcsinS vg

vp
sin

ug

2 D , ~A10!

whereug is the angle between the grating beams.

2. Signal intensity for the case of finite-bandwidth
laser line shapes

Let us assume that the input laser beams have finite-
bandwidth line shapes represented by the functionsg(v
6vg ,Dg) and p(v6vp ,Dp). The resulting induced polar-
ization oscillating at frequencyvp and characterized by the
wave vectorks is given by Eq.~10!. Thus, a solutionE(r ,t)
of Eq. ~1! may be found in the form of

E~r ,t !5E~z,t !exp~ i k̃s•r !1c.c. ~A11!

By substituting Eqs.~10! and~A11! into Eq.~1! and Fourier-
transforming both sides of this equation, the linear differen-
tial equation

i
v f e

c

]E~z,v!

]z
52

2pv2

c2

p~v2vp ,Dp!

~v2v f e1 iG f e!

3 P exp@ i ~ks2 k̃s!•r #1
v f e

2 2v2

c2
E~z,v!,

~A12!

is obtained. Here Eq.~11! has been used and the approxima-
tions in Eqs.~A8! have been adopted forE(r ,t). For v
.vp.v f e , Eq. ~A12! may be rewritten as

i
v f e

c

]E~z,v!

]z
52

2pv f e
2

c2

p~v2vp ,Dp!

~v2v f e1 iG f e!

3 P exp@ i ~ks2 k̃s!•r #, ~A13!

and integrated overz for the interval (0,L) to give

E~L,v!5
2p iv f e

c

p~v2vp ,Dp!

~v2v f e1 iG f e!
PL exp~ iq!

sinq

q
.

~A14!

The phase-matched (q50) detected signalI, which results
from the coherent superposition of the Fourier components
of the output optical field, is given by

I[
c

8p U E
2`

`

E~L,v!dvU2

5
uPu2L2v f e

2

8pc U E
2`

`

dv
p~v2vp ,Dp!

~v2v f e1 iG f e!
U2

, ~A15!

which is the expression given in Eq.~12!. Similarly, to ob-
tain Eq.~17!, it suffices to replacev f e with vQB in Eq. ~A15!
and make use of the expression of the susceptibility given in
Eq. ~15!.

APPENDIX B: EVALUATION OF THE GRATING-
LASER CONTRIBUTION TO THE SIGNAL
LINE PROFILE

The integral overv1 andv2 in Eq. ~10! may be written
as

j ~ t !5E
2`

`

e2 ivtg~v1vg ,Dg!dvE
2`

`

e2 ivt

3
g~v2vg ,Dg!

v2vei1 iGei
dv1E

2`

`

e2 ivtg~v2vg ,Dg!dv

3E
2`

`

e2 ivt
g~v1vg ,Dg!

2v1vei1 iGei
dv, ~B1!

where the numerical subscripts of the frequencies have been
dropped for simplicity. Thus, Eq.~10! may be rewritten as

P~3!~r ,t !5P exp~ iks•r ! j ~ t !E
2`

`

H~v3!e2 iv3tdv3 ,

~B2!

where

H~v3!5
p~v32vp ,Dp!

v32v f e1 iG f e
,

and the time Fourier transform ofP(3)(r ,t) is

P~3!~r ,v!

5P exp~ iks•r !E
2`

` Feivt j ~ t !dvE
2`

`

H~v3!e2 iv3tGdv3

5Pexp~ iks•r !E
2`

`

H~v3!dv3E
2`

`

eivte2 iv3t j ~ t !dv

5Pexp~ iks•r !E
2`

`

H~v3!J~v2v3!dv3 . ~B3!

In Eq. ~B3!, J(v) is the Fourier transform ofj (t). According
to Eq.~B1! and owing to the convolution theorem for Fourier
transforms, we obtain
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J~v!5E
2`

`

g~V1vg ,Dg!
g~v2V2vg ,Dg!

v2V2vei1 iGei
dV

1E
2`

`

g~V2vg ,Dg!
g~v2V1vg ,Dg!

2v2V1vei1 iGei
dV.

~B4!

The first term in Eq.~B4! is the overlap integral between
g(V1vg ,Dg), which has a maximum atV52vg , and
g(v2V2vg ,Dg)/(v2V2vei1 iGei), which, given that
vg.vei , has a maximum atV5v2vg . Assuming that the
spread of all functions around their maxima is much smaller
than 2vg and knowing that the horizontal centroids of two
functions add under convolution, maximum overlap is ob-
tained whenv2vg52vg , i.e., whenv50. Owing to the
same arguments, the second term also exhibits a maximum
for v50. Hence, the overallJ(v) has a maximum atv
50. In light of these facts, Eq.~B2! implies that the time-
domain polarizationP(3)(r ,t) is the product of j (t), a
slowly-varying function, times the Fourier antitransform of
H(v), which oscillates at a rapidly-varying optical fre-
quency, namely,v.vp.v f e . Thus, j (t) results only in a
slow amplitude-modulation having negligible effect on the
optical spectrum, which allows us to use the approximation
J(v2v3).J0d(v2v3), whereJ0 is a constant. This ap-
proximation is equivalent to modeling the grating beam line
shape as ad function. Sincevg.vei , Eq. ~B4! can, indeed,
be rewritten as

J~v!5E
2`

`

g~x,Dg!
g~v2x,Dg!

v2x1 iGei
dx

1E
2`

`

g~y,Dg!
g~v2y,Dg!

2v2y1 iGei
dy, ~B5!

where x5V1vg and y5V2vg . Equation ~B5! can be
written as

J~v!5E
2`

`

g~x,Dg!g~v2x,Dg!

3S 1

v2x1 iGei
1

1

2v2x1 iGei
Ddx

5E
2`

`

g~x,Dg!g~v2x,Dg!
x2 iGei

v22~x2 iGei!
2

dx,

and, by approximatingg(x,Dg) andg(v2x,Dg) with d(x)
andd(v2x), respectively, we obtain

J~v!.E
2`

`

d~x!d~v2x!
x2 iGei

v22~x2 iGei!
2

dx5
d~v!

Gei
.

~B6!

According to Eq.~B6!, it is also seen thatJ051/Gei , which
allows us to rewrite Eq.~B3! as

P~3!~r ,v!5
P

Gei
exp~ iks•r !E

2`

`

H~v3!d~v2v3!dv3 .

~B7!

By evaluating the integral in Eq.~B7!, Eq. ~11! is obtained.
The same arguments can also be used to derive Eq.~16!.

APPENDIX C: EVALUATION OF THE SIGNAL
LINE-PROFILE INTEGRALS

The evaluation of the integral in Eq.~21! may be per-
formed by means of contour integration in the complex
plane. A complex variablez is introduced such thatz
5Re(z), the integrand of Eq.~21! is evaluated inz, and
three poles of first order are found,zpole522i , zp6 ib.
Choosing the semicircle pathC shown in Fig. 9 and applying
the residue theorem yields

I~zp!5U2p i Res~zp1 ib!1 lim
R→`

3E
0

p iReiudu

R 3@~eiu2 zp /R!21 b2/R 2#~eiu1 2i /R!
U2

5u2p i Res~zp1 ib!u25
p2

b2 U 1

zp1 i ~b12!
U2

, ~C1!

where Res(zp1 ib) is the residue of the integrand inz5zp

1 ib andR is the radius ofC. By evaluating the absolute
square in Eq.~C1!, Eq. ~22! is obtained.

Complex-plane contour integration can also be used to
evaluate the integral overh in Eq. ~33! and, as shown in Eq.
~B1! of Ref. 24, this results in

I~jp!5U E
2`

`

dj
1

~j2jp!21s2

3
~q212r 11!2 i @2q1~11r !j#

j12i U2

. ~C2!

At this point, the integration overj can be performed, again,
via complex-plane contour integration by introducing the
complex variablez such that Re(z)5j and exploiting the
same pathC shown in Fig. 9. Again, three poles are found;
zpole522i , jp6 is and, using the residue theorem, the fol-
lowing result is obtained:

I~jp!5U2p i Res~jp1 is!1 lim
R→`

E
0

p

ieiudu

3
~q212r 11!/R2 i @2q/R1~11r !eiu#

R@~eiu2 jp /R!21 s2/R 2#~eiu1 2i /R!
U2

5u2p i Res~jp1 is!u2

5Ups ~q212r 11!2 i @2q1~11r !~jp1 is!#

jp1 is12i U2

, ~C3!
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which, after the evaluation of the squared modulus, gives the
expression in Eq.~34!.

The evaluation of Eq.~28! is performed by observing
that

I~zp!5U E
zp2b

zp1b 1

z12i
dzU2

5S E
zp2b

zp1b z

z214
dz D 2

14S E
zp2b

zp1b 1

z214
dz D 2

, ~C4!

where the antiderivatives of the two integrands in parenthe-
ses are lnAz214 and (1/2)arctan(z/2), respectively. The re-
sult in Eq.~29! is then obtained by using the addition rule for
the inverse tangent,

arctanx2arctany5arctan
x2y

11xy
, ;x,y, ~C5!

along with the identity

1

2
ln

11x

12x
5arctanhx, ;x. ~C6!

The integral in Eq.~38! may, finally, be rewritten as

I~jp!5U E
jp2s

jp1s

dj
~q212r 11!2 i @2q1~11r !j#

j12i U2

~C7!

by performing the integration overh as done above to obtain
Eq. ~C2!. The integration overj in Eq. ~C7! may be per-
formed by introducing once again the complex variablez
such thatj5Re(z), evaluating the integrand inz, and calcu-
lating the integral in the complex plane. The integral may,
then, be rewritten as

I~jp!5U~q212r 1122iq !E
jp2s

jp1s dz

z12i

2 i ~11r !E
jp2s

jp1sS 12
2i

z12i DdzU2

5U~q2 i !2E
jp2s

jp1s dz

z12i
2 i ~11r !E

jp2s

jp1s

dzU2

.

~C8!

The integrand in Eq.~C8! has only one pole atj522i and
it is analytic in a connected region including the real-axis
path @(jp2s)→(jp1s)# so that, owing to the Cauchy
theorem,

I~jp!5u~q2 i !2@ ln~jp1s12i !2 ln~jp2s12i !#

22i ~11r !su2

5U~q2 i !2F ln
A~jp1s!214

A~jp2s!214

1 i S arctan
2

jp1s
2arctan

2

jp2s D G
22i ~11r !s2U2

. ~C9!

By using Eqs.~C5! and ~C6!, Eq. ~C9! may be written as

I~jp!5U~q2 i !2Farctanh
2sjp

s21jp
214

1 i arctan
4s

s22jp
224

G22i ~11r !s2U2

. ~C10!

By explicitly calculating the squared modulus at the right-
hand side of Eq.~C10!, the result in Eq.~38! is obtained.
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