520 research outputs found

    The Case Against Compulsory Automobile Insurance

    Get PDF

    Using Attachment Theory to Understand Intergenerational Transmission of Intimate Partner Violence and Implications for Use in Treatment and Policy Reform

    Get PDF
    Background: Intimate partner violence is experienced by at least 1.3 million women each year, who make up 85 percent of victims. One in every four women will experience intimate partner violence in her lifetime. Many programs are available that offer limited services to victims and perpetrators alike. These programs have been proven to be ineffective and are deficient in evidence-based practice and outcome evaluation, yet they continue to be funded each year. Objective: To identify current evidence-based practice and outcome evaluation research on intimate partner violence as a result of attachment style and the use of attachment theory in therapeutic treatment programming and policy-making. Methods: A literature search was conducted to identify articles that have described intimate partner violence, how intergenerational transmission works and the theories behind it, and how attachment theory lends itself to the understanding of intergenerational transmission and perpetuation of intimate partner violence. Results: An association was found between the intergenerational transmission of intimate partner violence and individual or partner attachment styles. Witnessing intimate partner violence in combination with the influence of insecure parental attachment bonds creates an individual who often develops anxious adult romantic attachment patterns leading to a greater propensity to enter into a violent intimate relationship. Conclusions: This problem is of great public health significance due to the amount of women affected each year by intimate partner violence in the United States. There is a great need for implementation of attachment theory in treatment provisions for victims and perpetrators of IPV. Current treatments are not effective and policies surrounding IPV lack effective restorative and rehabilitative therapies, while relying too heavily on retributive justice. More multifaceted treatment is needed that can be tailored to a specific couple’s needs. In addition, policies are essential to guide these treatment recommendations and decrease IPV in the United States

    Frequency Response of Graphene Electrolyte-Gated Field-Effect Transistors

    Get PDF
    This work develops the first frequency-dependent small-signal model for graphene electrolyte-gated field-effect transistors (EGFETs). Graphene EGFETs are microfabricated to measure intrinsic voltage gain, frequency response, and to develop a frequency-dependent small-signal model. The transfer function of the graphene EGFET small-signal model is found to contain a unique pole due to a resistive element, which stems from electrolyte gating. Intrinsic voltage gain, cutoff frequency, and transition frequency for the microfabricated graphene EGFETs are approximately 3.1 V/V, 1.9 kHz, and 6.9 kHz, respectively. This work marks a critical step in the development of high-speed chemical and biological sensors using graphene EGFETs.United States. Office of Naval Research (Grant N00014-12-1-0959)United States. Office of Naval Research (Grant N0014-16-1-2230)United States. National Aeronautics and Space Administration (Award NNX14AH11A)United States. Army Research Office (Contract W911NF-13-D-0001

    Relation Between First Arrival Time and Permeability in Self-Affine Fractures with Areas in Contact

    Full text link
    We demonstrate that the first arrival time in dispersive processes in self-affine fractures are governed by the same length scale characterizing the fractures as that which controls their permeability. In one-dimensional channel flow this length scale is the aperture of the bottle neck, i.e., the region having the smallest aperture. In two dimensions, the concept of a bottle neck is generalized to that of a minimal path normal to the flow. The length scale is then the average aperture along this path. There is a linear relationship between the first arrival time and this length scale, even when there is strong overlap between the fracture surfaces creating areas with zero permeability. We express the first arrival time directly in terms of the permeability.Comment: EPL (2012)

    Internal Friction and Vulnerability of Mixed Alkali Glasses

    Full text link
    Based on a hopping model we show how the mixed alkali effect in glasses can be understood if only a small fraction c_V ofthe available sites for the mobile ions is vacant. In particular, we reproduce the peculiar behavior of the internal friction and the steep fall (''vulnerability'') of the mobility of the majority ion upon small replacements by the minority ion. The single and mixed alkali internal friction peaks are caused by ion-vacancy and ion-ion exchange processes. If c_V is small, they can become comparable in height even at small mixing ratios. The large vulnerability is explained by a trapping of vacancies induced by the minority ions. Reasonable choices of model parameters yield typical behaviors found in experiments.Comment: 4 pages, 4 figure

    Rocket Engine Plume Diagnostics at Stennis Space Center

    Get PDF
    The Stennis Space Center has been at the forefront of development and application of exhaust plume spectroscopy to rocket engine health monitoring since 1989. Various spectroscopic techniques, such as emission, absorption, FTIR, LIF, and CARS, have been considered for application at the engine test stands. By far the most successful technology h a been exhaust plume emission spectroscopy. In particular, its application to the Space Shuttle Main Engine (SSME) ground test health monitoring has been invaluable in various engine testing and development activities at SSC since 1989. On several occasions, plume diagnostic methods have successfully detected a problem with one or more components of an engine long before any other sensor indicated a problem. More often, they provide corroboration for a failure mode, if any occurred during an engine test. This paper gives a brief overview of our instrumentation and computational systems for rocket engine plume diagnostics at SSC. Some examples of successful application of exhaust plume spectroscopy (emission as well as absorption) to the SSME testing are presented. Our on-going plume diagnostics technology development projects and future requirements are discussed

    Planning for Plume Diagnostics for Ground Testing of J-2X Engines at the SSC

    Get PDF
    John C. Stennis Space Center (SSC) is the premier test facility for liquid rocket engine development and certification for the National Aeronautics and Space Administration (NASA). Therefore, it is no surprise that the SSC will play the most prominent role in the engine development testing and certification for the J-2X engine. The Pratt & Whitney Rocketdyne J-2X engine has been selected by the Constellation Program to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage in NASA s strategy of risk mitigation for hardware development by building on the Apollo program and other lessons learned to deliver a human-rated engine that is on an aggressive development schedule, with first demonstration flight in 2010 and human test flights in 2012. Accordingly, J-2X engine design, development, test, and evaluation is to build upon heritage hardware and apply valuable experience gained from past development and testing efforts. In order to leverage SSC s successful and innovative expertise in the plume diagnostics for the space shuttle main engine (SSME) health monitoring,1-10 this paper will present a blueprint for plume diagnostics for various proposed ground testing activities for J-2X at SSC. Complete description of the SSC s test facilities, supporting infrastructure, and test facilities is available in Ref. 11. The A-1 Test Stand is currently being prepared for testing the J-2X engine at sea level conditions. The A-2 Test Stand is currently being used for testing the SSME and may also be used for testing the J-2X engine at sea level conditions in the future. Very recently, ground-breaking ceremony for the new A-3 rocket engine test stand took place at SSC on August 23, 2007. A-3 is the first large - scale test stand to be built at the SSC since the A and B stands were constructed in the 1960s. The A-3 Test Stand will be used for testing J-2X engines under vacuum conditions simulating high altitude operation at approximately 30,480 m (100,000 ft). To achieve the simulated altitude environment, chemical steam generators using isopropyl alcohol, LOX, and RELEASED - Printed documents may be obsolete; validate prior to use. water would run for the duration of the test and would generate approximately 2096 Kg/s of steam to reduce pressure in the test cell and downstream of the engine. The testing at the A-3 Test Stand is projected to begin in late 2010, meanwhile the J-2X component testing on A-1 is scheduled to begin later this year

    Poor fit to the multispecies coalescent is widely detectable in empirical data

    Get PDF
    Model checking is a critical part of Bayesian data analysis, yet it remains largely unused in systematic studies. Phylogeny estimation has recently moved into an era of increasingly complex models that simultaneously account for multiple evolutionary processes, the statistical fit of these models to the data has rarely been tested. Here we develop a posterior predictive simulation-based model check for a commonly used multispecies coalescent model, implemented in *BEAST, and apply it to 25 published data sets. We show that poor model fit is detectable in the majority of data sets; that this poor fit can mislead phylogenetic estimation; and that in some cases it stems from processes of inherent interest to systematists. We suggest that as systematists scale up to phylogenomic data sets, which will be subject to a heterogeneous array of evolutionary processes, critically evaluating the fit of models to data is an analytical step that can no longer be ignored. [Gene duplication and extinction; gene tree; hybridization; model fit; multispecies coalescent; next-generation sequencing; posterior predictive simulation; species delimitation; species tree.] © The Author(s) 2013
    corecore