300 research outputs found

    Sustainable flood risk and stormwater management in blue‐green cities; an interdisciplinary case study in Portland, Oregon

    Get PDF
    Blue-Green Infrastructure (BGI) is recognized as a viable strategy to manage stormwater and flood risk, and its multifunctionality may further enrich society through the provision of multiple cobenefits that extend far beyond the hydrosphere. Portland, Oregon, is an internationally renowned leader in the implementation of BGI and showcases many best practice examples. Nonetheless, a range of interdisciplinary barriers and uncertainties continue to cloud decision making and impede wider implementation of BGI. In this paper, we synthesize research conducted by the “Clean Water for All” (CWfA) research project and demonstrate that interdisciplinary evaluation of the benefits of Portland’s BGI, focusing on green street bioswales and the East Lents Floodplain Restoration Project, is essential to address biophysical and sociopolitical barriers. Effective interdisciplinary approaches require sustained interaction and collaboration to integrate disciplinary expertise toward a common problem-solving purpose, and strong leadership from researchers adapt at spanning disciplinary boundaries. While the disciplinary differences in methodologies were embraced in the CWfA project, and pivotal to providing evidence of the disparate benefits of multifunctional BGI, cross-disciplinary engagement, knowledge coproduction, and data exchanges during the research process were of paramount importance to reduce the potential for fragmentation and ensure research remained integrated. © 2020 The Authors. Journal of the American Water Resources Association published by Wiley Periodicals LLC on behalf of American Water Resources Associatio

    In-Vivo Evaluation of Microultrasound and Thermometric Capsule Endoscopes

    Get PDF
    Clinical endoscopy and colonoscopy are commonly used to investigate and diagnose disorders in the upper gastrointestinal tract and colon respectively. However, examination of the anatomically remote small bowel with conventional endoscopy is challenging. This and advances in miniaturization led to the development of video capsule endoscopy (VCE) to allow small bowel examination in a non-invasive manner. Available since 2001, current capsule endoscopes are limited to viewing the mucosal surface only due to their reliance on optical imaging. To overcome this limitation with submucosal imaging, work is under way to implement microultrasound (μUS) imaging in the same form as VCE devices. This paper describes two prototype capsules, termed Sonocap and Thermocap, which were developed respectively to assess the quality of μUS imaging and the maximum power consumption that can be tolerated for such a system. The capsules were tested in vivo in the oesophagus and small bowel of porcine models. Results are presented in the form of μUS B-scans and safe temperature readings observed up to 100 mW in both biological regions. These results demonstrate that acoustic coupling and μUS imaging can be achieved in vivo in the lumen of the bowel and the maximum power consumption that is possible for miniature μUS systems

    Dating the incision of the Yangtze River gorge at the First Bend using three-nuclide burial ages

    Get PDF
    Incision of the Yangtze River gorge is widely interpreted as evidence for lower crustal flow beneath the southeast margin of the Tibetan Plateau. Previous work focused on the onset of incision, but the duration of incision remains unknown. Here we present cosmogenic nuclide burial ages of sediments collected from caves on the walls of the gorge that show the gorge was incised ~1 km sometime between 18 and 9 Ma. Thereafter, incision slowed substantially. We resolve middle Miocene burial ages by using three nuclides and accounting for in situ muogenic production. This approach explains the absolute concentrations of 10Be, 26Al, and 21Ne, as well as 26Al/10Be and 21Ne/10Be ratios. A declining incision rate challenges existing geodynamic interpretations by suggesting that either (1) surface uplift has ceased immediately south of the plateau margin or (2) gorge incision is not a useful proxy for the timing of surface uplift

    Refractive-index sensing with ultra-thin plasmonic nanotubes

    Full text link
    We study the refractive-index sensing properties of plasmonic nanotubes with a dielectric core and ultra-thin metal shell. The few-nm thin metal shell is described by both the usual Drude model and the nonlocal hydrodynamic model to investigate the effects of nonlocality. We derive an analytical expression for the extinction cross section and show how sensing of the refractive index of the surrounding medium and the figure-of-merit are affected by the shape and size of the nanotubes. Comparison with other localized surface plasmon resonance sensors reveals that the nanotube exhibits superior sensitivity and comparable figure-of-merit

    Hydrogeomorphology of the Hyporheic Zone: Stream Solute and Fine Particle Interactions With a Dynamic Streambed

    Get PDF
    Hyporheic flow in streams has typically been studied separately from geomorphic processes. We investigated interactions between bed mobility and dynamic hyporheic storage of solutes and fine particles in a sand-bed stream before, during, and after a flood. A conservatively transported solute tracer (bromide) and a fine particles tracer (5 μm latex particles), a surrogate for fine particulate organic matter, were co-injected during base flow. The tracers were differentially stored, with fine particles penetrating more shallowly in hyporheic flow and retained more efficiently due to the high rate of particle filtration in bed sediment compared to solute. Tracer injections lasted 3.5 h after which we released a small flood from an upstream dam one hour later. Due to shallower storage in the bed, fine particles were rapidly entrained during the rising limb of the flood hydrograph. Rather than being flushed by the flood, we observed that solutes were stored longer due to expansion of hyporheic flow paths beneath the temporarily enlarged bedforms. Three important timescales determined the fate of solutes and fine particles: (1) flood duration, (2) relaxation time of flood-enlarged bedforms back to base flow dimensions, and (3) resulting adjustments and lag times of hyporheic flow. Recurrent transitions between these timescales explain why we observed a peak accumulation of natural particulate organic matter between 2 and 4 cm deep in the bed, i.e., below the scour layer of mobile bedforms but above the maximum depth of particle filtration in hyporheic flow paths. Thus, physical interactions between bed mobility and hyporheic transport influence how organic matter is stored in the bed and how long it is retained, which affects decomposition rate and metabolism of this southeastern Coastal Plain stream. In summary we found that dynamic interactions between hyporheic flow, bed mobility, and flow variation had strong but differential influences on base flow retention and flood mobilization of solutes and fine particulates. These hydrogeomorphic relationships have implications for microbial respiration of organic matter, carbon and nutrient cycling, and fate of contaminants in streams

    Developing a Framework and Priorities to Promote Mobility Among Older Adults

    Get PDF
    Mobility, broadly defined as movement in all of its forms from ambulation to transportation, is critical to supporting optimal aging. This article describes two projects to develop a framework and a set of priority actions designed to promote mobility among community-dwelling older adults. Project 1 involved a concept-mapping process to solicit and organize action items into domains from a broad group of stakeholders to create the framework. Concept mapping uses qualitative group processes with multivariate statistical analysis to represent the ideas visually through maps. A snowball technique was used to identify stakeholders (n = 211). A 12-member steering committee developed a focus prompt, “One specific action that can lead to positive change in mobility for older adults in the United States is …” Project 2 included a Delphi technique (n = 43) with three iterations to prioritize four to six items using results from the concept mapping rating process. Project 1 resulted in 102 items across nine domains (Research to Practice, Independence and Engagement, Built Environment and Safety, Transportation, Policy, Housing and Accessibility, Community Supports, Training, and Coordinated Action). The number of items ranged from 6 to 18 per domain. Project 2 resulted in agreement on four items that reflect the importance of promoting environmental strategies through collaborative initiatives aimed at planning and best practices focusing on environmental enhancements or transit, training of professionals, and integration of mobility into state and local public health plans. These findings can be applied to support coordinated, multidisciplinary research and practice to promote mobility among older adults

    The Arabidopsis B3 domain protein VERNALIZATION1 is involved in processes essential for development with structural and mutational studies revealing its DNA binding surface

    Get PDF
    The B3 DNA-binding domain is a plant-specific domain found throughout the plant kingdom from the alga Chlamydomonas to grasses and flowering plants. Over 100 B3 domain-containing proteins are found in the model plant Arabidopsis thaliana, and one of these is critical for accelerating flowering in response to prolonged cold treatment, an epigenetic process called vernalization. Despite the specific phenotype of genetic vrn1 mutants, the VERNALIZATION1 (VRN1) protein localizes throughout the nucleus and shows sequence-nonspecific binding in vitro. In this work, we used a dominant repressor tag that overcomes genetic redundancy to show that VRN1 is involved in processes beyond vernalization that are essential for Arabidopsis development. To understand its sequence-nonspecific binding, we crystallized VRN1(208-341) and solved its crystal structure to 1.6 angstrom resolution using selenium/single-wavelength anomalous diffraction methods. The crystallized construct comprises the second VRN1 B3 domain and a preceding region conserved among VRN1 orthologs but absent in other B3 domains. We established the DNA-binding face using NMR and then mutated positively charged residues on this surface with a series of 16 Ala and Glu substitutions, ensuring that the protein fold was not disturbed using heteronuclear single quantum correlation NMR spectra. The triple mutant R249E/R289E/R296E was almost completely incapable of DNA binding in vitro. Thus, we have revealed that although VRN1 is sequence-nonspecific in DNA binding, it has a defined DNA-binding surface

    Use of a recombinant Salmonella enterica serovar Typhimurium strain expressing C-Raf for protection against C-Raf induced lung adenoma in mice

    Get PDF
    BACKGROUND: Serine-threonine kinases of the Raf family (A-Raf, B-Raf, C-Raf) are central players in cellular signal transduction, and thus often causally involved in the development of cancer when mutated or over-expressed. Therefore these proteins are potential targets for immunotherapy and a possible basis for vaccine development against tumors. In this study we analyzed the functionality of a new live C-Raf vaccine based on an attenuated Salmonella enterica serovar Typhimurium aroA strain in two Raf dependent lung tumor mouse models. METHODS: The antigen C-Raf has been fused to the C-terminal secretion signal of Escherichia coli α-hemolysin and expressed in secreted form by an attenuated aroA Salmonella enterica serovar Typhimurium strain via the α-hemolysin secretion pathway. The effect of the immunization with this recombinant C-Raf strain on wild-type C57BL/6 or lung tumor bearing transgenic BxB mice was analyzed using western blot and FACS analysis as well as specific tumor growth assays. RESULTS: C-Raf antigen was successfully expressed in secreted form by an attenuated Salmonella enterica serovar Typhimurium aroA strain using the E. coli hemolysin secretion system. Immunization of wild-type C57BL/6 or tumor bearing mice provoked specific C-Raf antibody and T-cell responses. Most importantly, the vaccine strain significantly reduced tumor growth in two transgenic mouse models of Raf oncogene-induced lung adenomas. CONCLUSIONS: The combination of the C-Raf antigen, hemolysin secretion system and Salmonella enterica serovar Typhimurium could form the basis for a new generation of live bacterial vaccines for the treatment of Raf dependent human malignancies
    corecore