612 research outputs found

    Melatonin treatment improves kidding percentage in Angora does

    Full text link

    Comparing the effect of CTG+STan with CTG alone on emergency Cesarean section rate : STan Australian Randomized controlled Trial (START)

    Get PDF
    The authors would like to thank the women and their babies for participating. We would like to thank all the staff at the WCH, in particular Priya Umampathysivam, Denise Cheetham and Cecilia Heitmann for their assistance in recruitment of participants for START. We would also like to thank the members of the DSMC, Diogo Ayres-de-Campos, Scott Morris and Katherine Lee, for their oversight of START and the Clinical Information Service (CIS) team at the WCH for the comparative hospital dataPeer reviewedPublisher PD

    Challenging the 'New Professionalism': from managerialism to pedagogy?

    Get PDF
    In recent years there have been changes made to the conceptualisation of continuing professional development for teachers in both the Scottish and English systems of education. These changes have been instigated by successive UK governments (and more recently, by the Scottish Executive), together with the General teaching Council for Scotland (GTCS) and the General Teaching Council for England (GTCE). This paper argues that these changes have not provided a clear rationale for CPD, but instead have introduced tensions between the concept of teacher education and that of training. The need for a less confused understanding of CPD and its purposes is underlined, as is the need for school based approaches to continuing teacher education. Arguably, teacher education must move from technicist emphases to a model which integrates the social processes of change within society and schools with the individual development and empowerment of teachers

    Observations and Modelling of Relativistic Spin Precession in PSR J1141-6545

    Full text link
    Observations of the binary pulsar PSR J1141-6545 using the Parkes radio telescope over 9.3 years show clear time-variations in pulse width, shape and polarization. We interpret these variations in terms of relativistic precession of the pulsar spin axis about the total angular momentum vector of the system. Over the nine years, the pulse width at the 50% level has changed by more than a factor of three. Large variations have also been observed in the 1400-MHz mean flux density. The pulse polarization has been monitored since 2004 April using digital filterbank systems and also shows large and systematic variations in both linear and circular polarization. Position angle variations, both across the pulse profile and over the data span, are complex, with major differences between the central and outer parts of the pulse profile. Modelling of the observed position angle variations by relativistic precession of the pulsar spin axis shows that the spin-orbit misalignment angle is about 110 deg and that the precessional phase has passed through 180 deg during the course of our observations. At the start of our observations, the line-of-sight impact parameter was about 4 deg in magnitude and it reached a minimum very close to 0 deg around early 2007, consistent with the observed pulse width variations. We have therefore mapped approximately one half of the emission beam, showing that it is very asymmetric with respect to the magnetic axis. The derived precessional parameters imply that the pre-supernova star had a mass of about 2 Msun and that the supernova recoil kick velocity was relatively small. With the reversal in the rate of change of the impact parameter, we predict that over the next decade we will see a reversed "replay" of the variations observed in the past decade.Comment: 45 pages, 19 figures, 6 tables, accepted by Astrophysical Journa

    Interdependent Infrastructure as Linked Social, Ecological, and Technological Systems (SETSs) to Address Lock‐in and Enhance Resilience

    Get PDF
    Traditional infrastructure adaptation to extreme weather events (and now climate change) has typically been techno‐centric and heavily grounded in robustness—the capacity to prevent or minimize disruptions via a risk‐based approach that emphasizes control, armoring, and strengthening (e.g., raising the height of levees). However, climate and nonclimate challenges facing infrastructure are not purely technological. Ecological and social systems also warrant consideration to manage issues of overconfidence, inflexibility, interdependence, and resource utilization—among others. As a result, techno‐centric adaptation strategies can result in unwanted tradeoffs, unintended consequences, and underaddressed vulnerabilities. Techno‐centric strategies that lock‐in today\u27s infrastructure systems to vulnerable future design, management, and regulatory practices may be particularly problematic by exacerbating these ecological and social issues rather than ameliorating them. Given these challenges, we develop a conceptual model and infrastructure adaptation case studies to argue the following: (1) infrastructure systems are not simply technological and should be understood as complex and interconnected social, ecological, and technological systems (SETSs); (2) infrastructure challenges, like lock‐in, stem from SETS interactions that are often overlooked and underappreciated; (3) framing infrastructure with a SETS lens can help identify and prevent maladaptive issues like lock‐in; and (4) a SETS lens can also highlight effective infrastructure adaptation strategies that may not traditionally be considered. Ultimately, we find that treating infrastructure as SETS shows promise for increasing the adaptive capacity of infrastructure systems by highlighting how lock‐in and vulnerabilities evolve and how multidisciplinary strategies can be deployed to address these challenges by broadening the options for adaptation

    Effect of near-terminus subglacial hydrology on tidewater glacier submarine melt rates

    Get PDF
    Submarine melting of Greenlandic tidewater glacier termini is proposed as a possiblemechanism driving their recent thinning and retreat. We use a general circulation model, MITgcm, tosimulate water circulation driven by subglacial discharge at the terminus of an idealized tidewater glacier.We vary the spatial distribution of subglacial discharge emerging at the grounding line of the glacier andexamine the effect on submarine melt volume and distribution. We find that subglacial hydrology exerts animportant control on submarine melting; under certain conditions a distributed system can induce a factor5 more melt than a channelized system, with plumes from a single channel inducing melt over only alocalized area. Subglacial hydrology also controls the spatial distribution of melt, which has the potential tocontrol terminus morphology and calving style. Our results highlight the need to constrain near-terminussubglacial hydrology at tidewater glaciers if we are to represent ocean forcing accurately
    corecore