8 research outputs found

    Rho-omega Mixing and the Pion Electromagnetic Form-Factor

    Full text link
    The suggestion of momentum dependence in the amplitude for rho-omega mixing has generated concern over related implications for vector meson dominance and the photon-rho coupling. We discuss two established representations of vector meson dominance and show that one of these is completely consistent with such a coupling. We then apply it to a calculation of the pion electromagnetic form-factor. Our analysis leads to a new value for the on-shell rho-omega mixing amplitude of (-3800 +/- 370) MeV^2.Comment: 11 pages with epsfig.sty. Publication details added to title pag

    Tri-meson-mixing of π\pi-η\eta-ηâ€Č\eta' and ρ\rho-ω\omega-ϕ\phi in the light-cone quark model

    Full text link
    The radiative transition form factors of the pseudoscalar mesons {π\pi, η\eta, ηâ€Č\eta'} and the vector mesons {ρ\rho, ω\omega, ϕ\phi} are restudied with π\pi-η\eta-ηâ€Č\eta' and ρ\rho-ω\omega-ϕ\phi in tri-meson-mixing pattern, which is described by tri-mixing matrices in the light-cone constituent quark model. The experimental transition decay widths are better reproduced with tri-meson-mixing than previous results in a two-mixing-angle scenario of only two-meson η\eta-ηâ€Č\eta' mixing and ω\omega-ϕ\phi mixing.Comment: 8 pages, 6 figures, final version to appear in EPJ

    Validation of the cytokinesis-block micronucleus (CBMN) assay for use as a triage biological dosimetry tool

    No full text
    Traditionally, the dicentric chromosome assay (DCA) has been used to derive biological dose estimates for unknown radiological exposures. While sensitive, this assay requires highly trained evaluators and is extremely time consuming. The cytokinesis-block micronucleus (CBMN) assay has been suggested as an alternative to the DCA, as it is much faster to evaluate samples and requires less technical expertise. In order to validate this assay for triage biodosimetry, dose-response curves were generated for six donors at eight doses of gamma-radiation (0-4.0 Gy). Each sample was evaluated by 12 individuals, among three different laboratories and the incidence of micronuclei was determined after counting 50-500 binucleated cells. This study demonstrated that the CBMN assay was capable of detecting radiation doses ≄1 Gy after scoring only 200 binucleated cells. As such, the CBMN assay may provide a sensitive and reliable technique for deployment as an initial screening tool in a large-scale radiological emergency where large numbers of biological dose estimates are required
    corecore