8,686 research outputs found

    Effect of Pyrolysis on the Removal of Antibiotic Resistance Genes and Class I Integrons from Municipal Wastewater Biosolids

    Get PDF
    Wastewater biosolids represent a significant reservoir of antibiotic resistance genes (ARGs). While current biosolids treatment technologies can reduce ARG levels in residual wastewater biosolids, observed removal rates vary substantially. Pyrolysis is an anoxic thermal degradation process that can be used to convert biosolids into energy rich products including py-gas and py-oil, and a beneficial soil amendment, biochar. Batch pyrolysis experiments conducted on municipal biosolids revealed that the 16S rRNA gene, the ARGs erm(B), sul1, tet(L), tet(O), and the integrase gene of class 1 integrons (intI1) were significantly reduced at pyrolysis temperatures ranging from 300–700 °C, as determined by quantitative polymerase chain reaction (qPCR). Pyrolysis of biosolids at 500 °C and higher resulted in approximately 6-log removal of the bacterial 16S rRNA gene. ARGs with the highest observed removals were sul1 and tet(O), which had observed reductions of 4.62 and 4.04-log, respectively. Pyrolysis reaction time had a significant impact on 16S rRNA, ARG and intI1 levels. A pyrolysis residence time of 5 minutes at 500 °C reduced all genes to below detection limits. These results demonstrate that pyrolysis could be implemented as a biosolids polishing treatment technology to substantially decrease the abundance of total bacteria (i.e., 16S rRNA), ARGs and intI1 prior to land application of municipal biosolids

    Using geophysical surveys to test tracer-based storage estimates in headwater catchments

    Get PDF
    Acknowledgements The authors are grateful to Stian Bradford, Chris Gabrielli, and Julie Timms for practical and logistical assistance. The provision of transport by Iain Malcolm and Ross Glover of Marine Scotland Science was greatly appreciated. We also thank the European Research Council ERC (project GA 335910 VEWA) for funding through the VeWa project and the Leverhulme Trust for funding through PLATO (RPG-2014-016).Peer reviewedPostprin

    Influence of Sulfur-Containing Diamino Acid Structure on Covalently Crosslinked Copolypeptide Hydrogels.

    Get PDF
    Biologically occurring non-canonical di-α-amino acids were converted into new di-N-carboxyanhydride (di-NCA) monomers in reasonable yields with high purity. Five different di-NCAs were separately copolymerized with tert-butyl-l-glutamate NCA to obtain covalently crosslinked copolypeptides capable of forming hydrogels with varying crosslinker density. Comparison of hydrogel properties with residue structure revealed that different di-α-amino acids were not equivalent in crosslink formation. Notably, l-cystine was found to produce significantly weaker hydrogels compared to l-homocystine, l-cystathionine, and l-lanthionine, suggesting that l-cystine may be a sub-optimal choice of di-α-amino acid for preparation of copolypeptide networks. The di-α-amino acid crosslinkers also provided different chemical stability, where disulfide crosslinks were readily degraded by reduction, and thioether crosslinks were stable against reduction. This difference in response may provide a means to fine tune the reduction sensitivity of polypeptide biomaterial networks

    Triclocarban Influences Antibiotic Resistance and Alters Anaerobic Digester Microbial Community Structure

    Get PDF
    Triclocarban (TCC) is one of the most abundant organic micropollutants detected in biosolids. Lab-scale anaerobic digesters were amended with TCC at concentrations ranging from the background concentration of seed biosolids (30 mg/kg) to toxic concentrations of 850 mg/kg to determine the effect on methane production, relative abundance of antibiotic resistance genes, and microbial community structure. Additionally, the TCC addition rate was varied to determine the impacts of acclimation time. At environmentally relevant TCC concentrations (max detect = 440 mg/kg), digesters maintained function. Digesters receiving 450 mg/kg of TCC maintained function under gradual TCC addition, but volatile fatty acid concentrations increased, pH decreased, and methane production ceased when immediately fed this concentration. The concentrations of the mexB gene (encoding for a multidrug efflux pump) were higher with all concentrations of TCC compared to a control, but higher TCC concentrations did not correlate with increased mexB abundance. The relative abundance of the gene tet(L) was greater in the digesters that no longer produced methane, and no effect on the relative abundance of the class 1 integron integrase encoding gene (intI1) was observed. Illumina sequencing revealed substantial community shifts in digesters that functionally failed from increased levels of TCC. More subtle, yet significant, community shifts were observed in digesters amended with TCC levels that did not inhibit function. This research demonstrates that TCC can select for a multidrug resistance encoding gene in mixed community anaerobic environments, and this selection occurs at concentrations (30 mg/kg) that can be found in full-scale anaerobic digesters (U.S. median concentration = 22 mg/kg, mean = 39 mg/kg)

    Chronic Exposure to Triclosan Sustains Microbial Community Shifts and Alters Antibiotic Resistance Gene Levels in Anaerobic Digesters

    Get PDF
    Triclosan, an antimicrobial chemical found in consumer personal care products, has been shown to stimulate antibiotic resistance in pathogenic bacteria. Although many studies focus on antibiotic resistance pertinent to medical scenarios, resistance developed in natural and engineered environments is less studied and has become an emerging concern for human health. In this study, the impacts of chronic triclosan (TCS) exposure on antibiotic resistance genes (ARGs) and microbial community structure were assessed in lab-scale anaerobic digesters. TCS concentrations from below detection to 2500 mg kg−1 dry solids were amended into anaerobic digesters over 110 days and acclimated for \u3e3 solid retention time values. Four steady state TCS concentrations were chosen (30–2500 mg kg−1). Relative abundance of mexB, a gene coding for a component of a multidrug efflux pump, was significantly higher in all TCS-amended digesters (30 mg kg−1 or higher) relative to the control. TCS selected for bacteria carrying tet(L) and against those carrying erm(F) at concentrations which inhibited digester function; the pH decrease associated with digester failure was suspected to cause this selection. Little to no impact of TCS was observed on intI1 relative abundance. Microbial communities were also surveyed by high-throughput 16S rRNA gene sequencing. Compared to the control digesters, significant shifts in community structure towards clades containing commensal and pathogenic bacteria were observed in digesters containing TCS. Based on these results, TCS should be included in studies and risk assessments that attempt to elucidate relationships between chemical stressors (e.g. antibiotics), antibiotic resistance genes, and public health

    The Detectability of AGN Cavities in Cooling-Flow Clusters

    Full text link
    Chandra X-ray Observatory has revealed X-ray cavities in many nearby cooling flow clusters. The cavities trace feedback from the central active galactic nulceus (AGN) on the intracluster medium (ICM), an important ingredient in stabilizing cooling flows and in the process of galaxy formation and evolution. But, the prevalence and duty cycle of such AGN outbursts is not well understood. To this end, we study how the cooling is balanced by the cavity heating for a complete sample of clusters (the Brightest 55 clusters of galaxies, hereafter B55). In the B55, we found 33 cooling flow clusters, 20 of which have detected X-ray bubbles in their ICM. Among the remaining 13, all except Ophiuchus could have significant cavity power yet remain undetected in existing images. This implies that the duty cycle of AGN outbursts with significant heating potential in cooling flow clusters is at least 60 % and could approach 100 %, but deeper data is required to constrain this further.Comment: 4 pages, 2 figures; to appear in the proceedings of "The Monsters' Fiery Breath", Madison, Wisconsin 1-5 June 2009, Eds. Sebastian Heinz & Eric Wilcots; added annotation to the figur

    Promoting Farmer occupational safety and health (OSH) services through Extension

    Get PDF
    Received: February 13th, 2021 ; Accepted: April 24th, 2021 ; Published: April 30th, 2021 ; Correspondence: [email protected] for improving OSH in European agriculture are urgently required given the high level of reported injuries and ill health in the sector. The agriculture sector in Europe is enormous in scale and diverse in production systems. A dispersed labour force is deployed in the sector, predominantly using family labour, which is self-employed. Accordingly, a large proportion of the agricultural workforce is outside the scope of EU directives on occupational safety and health (OSH).The aim of this paper is to examine the role and engagement of the discipline of agricultural extension in promoting OSH in agriculture and consider methodologies that this discipline can use most effectively to gain OSH adoption. The paper compares regulatory and extension approaches to consider their respective roles in promoting OSH in agriculture. EU developments related to extension and OSH are then outlined. Regarding extension engagement, findings of a survey among extension and OSH professionals throughout Europe found that OSH is considered an important topic and worthwhile for inclusion in extension but it indicates that currently the level of extension programming is limited. Irish data on OSH extension methodologies indicates that advisors consider that a range of extension approaches are available to motivate farmers on OSH adoption with TV victim testimonials, on-farm social learning discussion groups and on-farm demonstrations having the highest preferences. Data presented indicates that Irish farmers expressed good satisfaction ratings with OSH extension relevance to their farms. Overall, the study advocates giving more consideration of the role of extension in promoting agricultural OSH

    Homogeneous cooling of rough, dissipative particles: Theory and simulations

    Get PDF
    We investigate freely cooling systems of rough spheres in two and three dimensions. Simulations using an event driven algorithm are compared with results of an approximate kinetic theory, based on the assumption of a generalized homogeneous cooling state. For short times tt, translational and rotational energy are found to change linearly with tt. For large times both energies decay like t−2t^{-2} with a ratio independent of time, but not corresponding to equipartition. Good agreement is found between theory and simulations, as long as no clustering instability is observed. System parameters, i.e. density, particle size, and particle mass can be absorbed in a rescaled time, so that the decay of translational and rotational energy is solely determined by normal restitution and surface roughness.Comment: 10 pages, 10 eps-figure

    Indeterminacy, Memory, and Motion in a Simple Granular Packing

    Full text link
    We apply two theoretical and two numerical methods to the problem of a disk placed in a groove and subjected to gravity and a torque. Methods assuming rigid particles are indeterminate -- certain combinations of forces cannot be calculated, but only constrained by inequalities. In methods assuming deformable particles, these combinations of forces are determined by the history of the packing. Thus indeterminacy in rigid particles becomes memory in deformable ones. Furthermore, the torque needed to rotate the particle was calculated. Two different paths to motion were identified. In the first, contact forces change slowly, and the indeterminacy decreases continuously to zero, and vanishes precisely at the onset of motion, and the torque needed to rotate the disk is independent of method and packing history. In the second way, this torque depends on method and on the history of the packing, and the forces jump discontinuously at the onset of motion.Comment: 11 pages, 7 figures, submitted to Phys Rev

    Energy flows in vibrated granular media

    Full text link
    We study vibrated granular media, investigating each of the three components of the energy flow: particle-particle dissipation, energy input at the vibrating wall, and particle-wall dissipation. Energy dissipated by interparticle collisions is well estimated by existing theories when the granular material is dilute, and these theories are extended to include rotational kinetic energy. When the granular material is dense, the observed particle-particle dissipation rate decreases to as little as 2/5 of the theoretical prediction. We observe that the rate of energy input is the weight of the granular material times an average vibration velocity times a function of the ratio of particle to vibration velocity. `Particle-wall' dissipation has been neglected in all theories up to now, but can play an important role when the granular material is dilute. The ratio between gravitational potential energy and kinetic energy can vary by as much as a factor of 3. Previous simulations and experiments have shown that E ~ V^delta, with delta=2 for dilute granular material, and delta ~ 1.5 for dense granular material. We relate this change in exponent to the departure of particle-particle dissipation from its theoretical value.Comment: 19 pages revtex, 10 embedded eps figures, accepted by PR
    • 

    corecore