779 research outputs found

    Ninja data analysis with a detection pipeline based on the Hilbert-Huang Transform

    Full text link
    The Ninja data analysis challenge allowed the study of the sensitivity of data analysis pipelines to binary black hole numerical relativity waveforms in simulated Gaussian noise at the design level of the LIGO observatory and the VIRGO observatory. We analyzed NINJA data with a pipeline based on the Hilbert Huang Transform, utilizing a detection stage and a characterization stage: detection is performed by triggering on excess instantaneous power, characterization is performed by displaying the kernel density enhanced (KD) time-frequency trace of the signal. Using the simulated data based on the two LIGO detectors, we were able to detect 77 signals out of 126 above SNR 5 in coincidence, with 43 missed events characterized by signal to noise ratio SNR less than 10. Characterization of the detected signals revealed the merger part of the waveform in high time and frequency resolution, free from time-frequency uncertainty. We estimated the timelag of the signals between the detectors based on the optimal overlap of the individual KD time-frequency maps, yielding estimates accurate within a fraction of a millisecond for half of the events. A coherent addition of the data sets according to the estimated timelag eventually was used in a characterization of the event.Comment: Accepted for publication in CQG, special issue NRDA proceedings 200

    Overview of the BlockNormal Event Trigger Generator

    Get PDF
    In the search for unmodeled gravitational wave bursts, there are a variety of methods that have been proposed to generate candidate events from time series data. Block Normal is a method of identifying candidate events by searching for places in the data stream where the characteristic statistics of the data change. These change-points divide the data into blocks in which the characteristics of the block are stationary. Blocks in which these characteristics are inconsistent with the long term characteristic statistics are marked as Event-Triggers which can then be investigated by a more computationally demanding multi-detector analysis.Comment: GWDAW-8 proceedings, 6 pages, 2 figure

    Superdeformation in 198^{198}Po

    Full text link
    The 174^{174}Yb(29^{29}Si,5n) reaction at 148 MeV with thin targets was used to populate high-angular momentum states in 198^{198}Po. Resulting γ\gamma rays were observed with Gammasphere. A weakly-populated superdeformed band of 10 γ\gamma-ray transitions was found and has been assigned to 198^{198}Po. This is the first observation of a SD band in the A190A \approx 190 region in a nucleus with Z>83Z > 83. The J(2){\cal J}^{(2)} of the new band is very similar to those of the yrast SD bands in 194^{194}Hg and 196^{196}Pb. The intensity profile suggests that this band is populated through states close to where the SD band crosses the yrast line and the angular momentum at which the fission process dominates.Comment: 10 pages, revtex, 2 figs. available on request, submitted to Phys. Rev. C. (Rapid Communications

    Spectroscopy of 194^{194}Po

    Get PDF
    Prompt, in-beam γ\gamma rays following the reaction 170^{170}Yb + 142 MeV 28^{28}Si were measured at the ATLAS facility using 10 Compton-suppressed Ge detectors and the Fragment Mass Analyzer. Transitions in 194^{194}Po were identified and placed using γ\gamma-ray singles and coincidence data gated on the mass of the evaporation residues. A level spectrum up to J\approx10\hbar was established. The structure of 194^{194}Po is more collective than that observed in the heavier polonium isotopes and indicates that the structure has started to evolve towards the more collective nature expected for deformed nuclei.Comment: 8 pages, revtex 3.0, 4 figs. available upon reques

    Plans for the LIGO-TAMA Joint Search for Gravitational Wave Bursts

    Full text link
    We describe the plans for a joint search for unmodelled gravitational wave bursts being carried out by the LIGO and TAMA collaborations using data collected during February-April 2003. We take a conservative approach to detection, requiring candidate gravitational wave bursts to be seen in coincidence by all four interferometers. We focus on some of the complications of performing this coincidence analysis, in particular the effects of the different alignments and noise spectra of the interferometers.Comment: Proceedings of the 8th Gravitational Wave Data Analysis Workshop, Milwaukee, WI, USA. 10 pages, 3 figures, documentclass ``iopart'

    Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision

    Get PDF
    We report a measurement of the positive muon lifetime to a precision of 1.0 parts per million (ppm); it is the most precise particle lifetime ever measured. The experiment used a time-structured, low-energy muon beam and a segmented plastic scintillator array to record more than 2 x 10^{12} decays. Two different stopping target configurations were employed in independent data-taking periods. The combined results give tau_{mu^+}(MuLan) = 2196980.3(2.2) ps, more than 15 times as precise as any previous experiment. The muon lifetime gives the most precise value for the Fermi constant: G_F(MuLan) = 1.1663788 (7) x 10^-5 GeV^-2 (0.6 ppm). It is also used to extract the mu^-p singlet capture rate, which determines the proton's weak induced pseudoscalar coupling g_P.Comment: Accepted for publication in Phys. Rev. Let

    The diet of powerful owls (Ninox strenua) and prey availability in a continuum of habitats from disturbed urban fringe to protected forest environments in south-eastern Australia

    Full text link
    This study investigates the diet of six breeding pairs of powerful owls in the Yarra Valley Corridor in Victoria, Australia, and compares prey consumption with prey availability. The six sites represent a continuum of habitats, ranging from urban Melbourne, through the urban fringe interface to a more forested landscape. We found that powerful owls in the Yarra Valley Corridor are reliant almost exclusively on arboreal marsupial prey as their preferred diet, with 99% of their overall diet comprising four arboreal marsupial species. These four species (the common ringtail possum, common brushtail possum, sugar glider and greater glider) were also the most abundant species observed while spotlighting; however, their abundance varied along the continuum. There was a strong positive relationship with the presence of these species in the diet and their site-specific availability, indicating that the powerful owl is a generalist hunter, preying on the most available prey at a given site and in a given season. This study suggests that food resources are high in these disturbed urban fringe sites and it is unlikely that food availability in urban environments will limit the potential survival of urban powerful owls.<br /

    Improved Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant

    Full text link
    The mean life of the positive muon has been measured to a precision of 11 ppm using a low-energy, pulsed muon beam stopped in a ferromagnetic target, which was surrounded by a scintillator detector array. The result, tau_mu = 2.197013(24) us, is in excellent agreement with the previous world average. The new world average tau_mu = 2.197019(21) us determines the Fermi constant G_F = 1.166371(6) x 10^-5 GeV^-2 (5 ppm). Additionally, the precision measurement of the positive muon lifetime is needed to determine the nucleon pseudoscalar coupling g_P.Comment: As published version (PRL, July 2007

    Data Analysis Challenges for the Einstein Telescope

    Full text link
    The Einstein Telescope is a proposed third generation gravitational wave detector that will operate in the region of 1 Hz to a few kHz. As well as the inspiral of compact binaries composed of neutron stars or black holes, the lower frequency cut-off of the detector will open the window to a number of new sources. These will include the end stage of inspirals, plus merger and ringdown of intermediate mass black holes, where the masses of the component bodies are on the order of a few hundred solar masses. There is also the possibility of observing intermediate mass ratio inspirals, where a stellar mass compact object inspirals into a black hole which is a few hundred to a few thousand times more massive. In this article, we investigate some of the data analysis challenges for the Einstein Telescope such as the effects of increased source number, the need for more accurate waveform models and the some of the computational issues that a data analysis strategy might face.Comment: 18 pages, Invited review for Einstein Telescope special edition of GR

    LOOC UP: Locating and observing optical counterparts to gravitational wave bursts

    Full text link
    Gravitational wave (GW) bursts (short duration signals) are expected to be associated with highly energetic astrophysical processes. With such high energies present, it is likely these astrophysical events will have signatures in the EM spectrum as well as in gravitational radiation. We have initiated a program, "Locating and Observing Optical Counterparts to Unmodeled Pulses in Gravitational Waves" (LOOC UP) to promptly search for counterparts to GW burst candidates. The proposed method analyzes near real-time data from the LIGO-Virgo network, and then uses a telescope network to seek optical-transient counterparts to candidate GW signals. We carried out a pilot study using S5/VSR1 data from the LIGO-Virgo network to develop methods and software tools for such a search. We will present the method, with an emphasis on the potential for such a search to be carried out during the next science run of LIGO and Virgo, expected to begin in 2009.Comment: 11 pages, 2 figures; v2) added acknowledgments, additional references, and minor text changes v3) added 1 figure, additional references, and minor text changes. v4) Updated references and acknowledgments. To be published in the GWDAW 12 Conf. Proc. by Classical and Quantum Gravit
    corecore