8,561 research outputs found
Homogeneous cooling of rough, dissipative particles: Theory and simulations
We investigate freely cooling systems of rough spheres in two and three
dimensions. Simulations using an event driven algorithm are compared with
results of an approximate kinetic theory, based on the assumption of a
generalized homogeneous cooling state. For short times , translational and
rotational energy are found to change linearly with . For large times both
energies decay like with a ratio independent of time, but not
corresponding to equipartition. Good agreement is found between theory and
simulations, as long as no clustering instability is observed. System
parameters, i.e. density, particle size, and particle mass can be absorbed in a
rescaled time, so that the decay of translational and rotational energy is
solely determined by normal restitution and surface roughness.Comment: 10 pages, 10 eps-figure
Active galactic nucleus feedback in clusters of galaxies
Observations made during the last ten years with the Chandra X-ray
Observatory have shed much light on the cooling gas in the centers of clusters
of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of
the hot intracluster medium in cluster centers can feed the supermassive black
holes found in the nuclei of the dominant cluster galaxies leading to AGN
outbursts which can reheat the gas, suppressing cooling and large amounts of
star formation. AGN heating can come in the form of shocks, buoyantly rising
bubbles that have been inflated by radio lobes, and the dissipation of sound
waves.Comment: Refereed review article published in Chandra's First Decade of
Discovery Special Feature edition of the Proceedings of the National Academy
of Science
The Insignificance of Global Reheating in the Abell 1068 Cluster: X-Ray Analysis
We report on a Chandra observation of the massive, medium redshift (z=0.1386)
cooling flow cluster Abell 1068. We detect a clear temperature gradient in the
X-ray emitting gas from kT ~ 5 keV in the outer part of the cluster down to
roughly 2 keV in the core, and a striking increase in the metallicity of the
gas toward the cluster center. The total spectrum from the cluster can be fit
by a cooling flow model with a total mass deposition rate of 150 solar
masses/yr. Within the core (r < 30 kpc), the mass depositon rate of 40 solar
masses/yr is comparable to estimates for the star formation rate from optical
data. We find an apparent correlation between the cD galaxy's optical isophotes
and enhanced metallicity isocontours in the central ~100 kpc of the cluster. We
show that the approximate doubling of the metallicity associated with the cD
can be plausibly explained by supernova explosions associated with the cD's
ambient stellar population and the recent starburst. Finally, we calculate the
amount of heating due to thermal conduction and show that this process is
unlikely to offset cooling in Abell 1068.Comment: Accepted for publication in ApJ, 26 pages, 12 b+w figures, 3 color
figure
Microscopic origin of granular ratcheting
Numerical simulations of assemblies of grains under cyclic loading exhibit
``granular ratcheting'': a small net deformation occurs with each cycle,
leading to a linear accumulation of deformation with cycle number. We show that
this is due to a curious property of the most frequently used models of the
particle-particle interaction: namely, that the potential energy stored in
contacts is path-dependent. There exist closed paths that change the stored
energy, even if the particles remain in contact and do not slide. An
alternative method for calculating the tangential force removes granular
ratcheting.Comment: 13 pages, 18 figure
Semi-classical geometry of charged black holes
At the classical level, two-dimensional dilaton gravity coupled to an abelian
gauge field has charged black hole solutions, which have much in common with
four-dimensional Reissner-Nordstrom black holes, including multiple asymptotic
regions, timelike curvature singularities, and Cauchy horizons. The black hole
spacetime is, however, significantly modified by quantum effects, which can be
systematically studied in this two-dimensional context. In particular, the
back-reaction on the geometry due to pair-creation of charged fermions
destabilizes the inner horizon and replaces it with a spacelike curvature
singularity. The semi-classical geometry has the same global topology as an
electrically neutral black hole.Comment: REVTeX, 4 pages, 2 figures; references adde
Bifurcation Diagram for Compartmentalized Granular Gases
The bifurcation diagram for a vibro-fluidized granular gas in N connected
compartments is constructed and discussed. At vigorous driving, the uniform
distribution (in which the gas is equi-partitioned over the compartments) is
stable. But when the driving intensity is decreased this uniform distribution
becomes unstable and gives way to a clustered state. For the simplest case,
N=2, this transition takes place via a pitchfork bifurcation but for all N>2
the transition involves saddle-node bifurcations. The associated hysteresis
becomes more and more pronounced for growing N. In the bifurcation diagram,
apart from the uniform and the one-peaked distributions, also a number of
multi-peaked solutions occur. These are transient states. Their physical
relevance is discussed in the context of a stability analysis.Comment: Phys. Rev. E, in press. Figure quality has been reduced in order to
decrease file-siz
On Time-dependent Collapsing Branes and Fuzzy Odd-dimensional Spheres
We study the time-dependent dynamics of a collection of N
collapsing/expanding D0-branes in type IIA String Theory. We show that the
fuzzy-S^3 and S^5 provide time-dependent solutions to the Matrix Model of
D0-branes and its DBI generalisation. Some intriguing cancellations in the
calculation of the non-abelian DBI Matrix actions result in the fuzzy-S^3 and
S^5 having the same dynamics at large-N. For the Matrix model, we find analytic
solutions describing the time-dependent radius, in terms of Jacobi elliptic
functions. Investigation of the physical properties of these configurations
shows that there are no bounces for the trajectory of the collapse at large-N.
We also write down a set of useful identities for fuzzy-S^3, fuzzy-S^5 and
general fuzzy odd-spheres.Comment: 35 pages, latex; v2: discussion in Appendix B on the large-N limit of
the associator is modified, main results of paper unchange
- …