1,021 research outputs found
Two dimensional eye tracking: Sampling rate of forcing function
A study was conducted to determine the minimum update rate of a forcing function display required for the operator to approximate the tracking performance obtained on a continuous display. In this study, frequency analysis was used to determine whether there was an associated change in the transfer function characteristics of the operator. It was expected that as the forcing function display update rate was reduced, from 120 to 15 samples per second, the operator's response to the high frequency components of the forcing function would show a decrease in gain, an increase in phase lag, and a decrease in coherence
Head tracking at large angles from the straight ahead position
One of the big advantages of a helmet sight in a high performance aircraft is its off-boresight capability in aiming a fire control system. However, tracking data using a target that is moving rapidly and randomly for an extended period of time is missing. This study is intended to provide data in this area that will be of value to engineers in designing head control systems
Recommended from our members
Aerosol number size distributions from 3 to 500 nm diameter in the arctic marine boundary layer during summer and autumn
Aerosol physics measurements made onboard the Swedish icebreaker Oden in the late Summer and early Autumn of 1991 during the International Arctic Ocean Expedition (IAOE-91) have provided the first data on the size distribution of particles in the Arctic marine boundary layer (MBL) that cover both the number and mass modes of the size range from 3 to 500 nm diameter. These measurements were made in conjunction with atmospheric gas and condensed phase chemistry measurements in an effort to understand a part of the ocean-atmosphere sulfur cycle. Analysis of the particle physics data showed that there were three distinct number modes in the submicrometric aerosol in the Arctic MBL. These modes had geometric mean diameters of around 170 nm. 45 nm and 14 nm referred to as accumulation, Aitken and ultrafine modes, respectively. There were clear minima in number concentrations between the modes that appeared at 20 to 30 nm and at 80 to 100 nm. The total number concentration was most frequently between 30 and 60 particles cm-3 with a mean value of around 100 particles cm-3, but the hourly average concentration varied over two to three orders of magnitude during the 70 days of the expedition. On average, the highest concentration was in the accumulation mode that contained about 45% of the total number, while the Aitken mode contained about 40%. The greatest variability was in the ultrafine mode concentration which is indicative of active, earby sources (nucleation from the gas phase) and sinks; the Aitken and accumulation mode concentrations were much less variable. The ultrafine mode was observed about two thirds of the time and was dominant 10% of the time. A detailed description and statistical analysis of the modal aerosol parameters is presented here
Errors in nanoparticle growth rates inferred from measurements in chemically reacting aerosol systems
In systems in which aerosols are being formed by chemical transformations,
individual particles grow due to the addition of molecular species. Efforts
to improve our understanding of particle growth often focus on attempts to
reconcile observed growth rates with values calculated from models. However,
because it is typically not possible to measure the growth rates of
individual particles in chemically reacting systems, they must be inferred
from measurements of aerosol properties such as size distributions, particle
number concentrations, etc. This work discusses errors in growth rates
obtained using methods that are commonly employed for analyzing atmospheric
data. We analyze data obtained by simulating the formation of aerosols in
a system in which a single chemical species is formed at a constant rate,
R. We show that the maximum overestimation error in measured growth rates
occurs for collision-controlled nucleation in a single-component system in
the absence of a preexisting aerosol, wall losses, evaporation or dilution,
as this leads to the highest concentrations of nucleated particles. Those
high concentrations lead to high coagulation rates that cause the nucleation
mode to grow faster than would be caused by vapor condensation alone. We also
show that preexisting particles, when coupled with evaporation, can
significantly decrease the concentration of nucleated particles. This can
lead to decreased discrepancies between measured growth rate and true growth
rate by reducing coagulation among nucleated particles. However, as particle
sink processes become stronger, measured growth rates can potentially be
lower than true particle growth rates. We briefly discuss nucleation
scenarios in which the observed growth rate approaches zero while the true
growth rate does not
Metabolism and distribution of p,p'-DDT during flight of the white-crowned sparrow, Zonotrichia leucophrys
This study evaluated the interactions of flight, fasting, and 1,1,1-trichloro-bis(4-chlorophenyl)ethane (p,p′-DDT) loading on residue metabolism and distribution in recently exposed white-crowned sparrows (Zonotrichia leucophrys). Female sparrows were dosed with 5 mg p,p′-DDT per kg body weight over 3 d. Following 1 d of recovery, sparrows were flown in a wind tunnel for up to 140 min, in 15-min blocks. Food was withheld from the start of the flight period until birds were euthanized. DDT, 1,1-dichloro-2,2-bis(4 chlorophenyl)ethane (DDD), and 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE) were present in all tissues examined. 1-Chloro-2,2-bis(4-chlorophenyl)ethene (DDµ), 1,1-bis(4-chlorophenyl)ethane (p,p′-DDη), and 2,2-bis(4-chlorophenyl)ethanol (p,p′-DDOH) were not found. Fasting did not significantly affect the rate of residue increase over time in any of the tissues examined. When sparrows flew and fasted simultaneously, fasting seldom contributed to an increase in tissue residues. However, the length of time flown was significantly correlated with increasing toxicant concentrations in the brain, kidney, and liver, effectively demonstrating the potential for brief flights to enhance mobilization of DDT and its metabolites. Dose, flight, and fasting also increased residues in brain tissue. These contaminant redistributions may have important ramifications on the stresses experienced by migratory birds
An improved criterion for new particle formation in diverse atmospheric environments
A dimensionless theory for new particle formation (NPF) was developed, using an aerosol population balance model incorporating recent developments in nucleation rates and measured particle growth rates. Based on this theoretical analysis, it was shown that a dimensionless parameter <i>L</i><sub>&Gamma;</sub>, characterizing the ratio of the particle scavenging loss rate to the particle growth rate, exclusively determined whether or not NPF would occur on a particular day. This parameter determines the probability that a nucleated particle will grow to a detectable size before being lost by coagulation with the pre-existing aerosol. Cluster-cluster coagulation was shown to contribute negligibly to this survival probability under conditions pertinent to the atmosphere. Data acquired during intensive measurement campaigns in Tecamac (MILAGRO), Atlanta (ANARChE), Boulder, and Hyytiälä (QUEST II, QUEST IV, and EUCAARI) were used to test the validity of <i>L</i><sub>&Gamma;</sub> as an NPF criterion. Measurements included aerosol size distributions down to 3 nm and gas-phase sulfuric acid concentrations. The model was applied to seventy-seven NPF events and nineteen non-events (characterized by growth of pre-existing aerosol without NPF) measured in diverse environments with broad ranges in sulfuric acid concentrations, ultrafine number concentrations, aerosol surface areas, and particle growth rates (nearly two orders of magnitude). Across this diverse data set, a nominal value of <i>L</i><sub>&Gamma;</sub>=0.7 was found to determine the boundary for the occurrence of NPF, with NPF occurring when <i>L</i><sub>&Gamma;</sub><0.7 and being suppressed when <i>L</i><sub>&Gamma;</sub>>0.7. Moreover, nearly 45% of measured <i>L</i><sub>&Gamma;</sub> values associated with NPF fell in the relatively narrow range of 0.1<<i>L</i><sub>&Gamma;</sub><0.3
Observation of neutral sulfuric acid-amine containing clusters in laboratory and ambient measurements
Recent ab initio calculations showed that amines can enhance atmospheric sulfuric acid-water nucleation more effectively than ammonia, and this prediction has been substantiated in laboratory measurements. Laboratory studies have also shown that amines can effectively displace ammonia in several types of ammonium clusters. However, the roles of amines in cluster formation and growth at a microscopic molecular scale (from molecular sizes up to 2 nm) have not yet been well understood. Processes that must be understood include the incorporation of amines into sulfuric acid clusters and the formation of organic salts in freshly nucleated particles, which contributes significantly to particle growth rates. We report the first laboratory and ambient measurements of neutral sulfuric acid-amine clusters using the Cluster CIMS, a recently-developed mass spectrometer designed for measuring neutral clusters formed in the atmosphere during nucleation. An experimental technique, which we refer to as Semi-Ambient Signal Amplification (SASA), was employed. Sulfuric acid was added to ambient air, and the concentrations and composition of clusters in this mixture were analyzed by the Cluster CIMS. This experimental approach led to significantly higher cluster concentrations than are normally found in ambient air, thereby increasing signal-to-noise levels and allowing us to study reactions between gas phase species in ambient air and sulfuric acid containing clusters. Mass peaks corresponding to clusters containing four H<sub>2</sub>SO<sub>4</sub> molecules and one amine molecule were clearly observed, with the most abundant sulfuric acid-amine clusters being those containing a C2- or C4-amine (i.e. amines with masses of 45 and 73 amu). Evidence for C3- and C5-amines (i.e. amines with masses of 59 and 87 amu) was also found, but their correlation with sulfuric acid tetramer was not as strong as was observed for the C2- and C4-amines. The formation mechanisms for those sulfuric acid-amine clusters were investigated by varying the residence time in the inlet. It was concluded that the amines react directly with neutral clusters and that ion-induced clustering of sulfuric acid cluster ions with amines was not a dominant process. Results from ambient measurements using the Cluster CIMS without addition of sulfuric acid have shown that the sulfuric acid-amine clusters were reasonably well correlated with sulfuric acid tetramer and consistent with the SASA experiments at the same Boulder sampling site. Also, clusters that contain C2- or C4-amines were more abundant and better correlated with sulfuric acid tetramer than other types of amine containing clusters. However, ambient measurements of sulfuric acid-amine clusters remain difficult and highly uncertain because their concentrations are only slightly above background levels, even during nucleation events
Particle Dynamics in a Mass-Conserving Coalescence Process
We consider a fully asymmetric one-dimensional model with mass-conserving
coalescence. Particles of unit mass enter at one edge of the chain and
coalescence while performing a biased random walk towards the other edge where
they exit. The conserved particle mass acts as a passive scalar in the reaction
process , and allows an exact mapping to a restricted ballistic
surface deposition model for which exact results exist. In particular, the
mass- mass correlation function is exactly known. These results complement
earlier exact results for the process without mass. We introduce a
comprehensive scaling theory for this process. The exact anaytical and
numerical results confirm its validity.Comment: 5 pages, 6 figure
Novel synthesis of O(6)-alkylguanine containing oligodeoxyribonucleotides as substrates for the human DNA repair protein, O(6)-methylguanine DNA methyltransferase (MGMT)
The human DNA repair protein O(6)-methylguanine DNA methyltransferase (MGMT) dealkylates mutagenic O(6)-alkylguanine lesions within DNA in an irreversible reaction which results in inactivation of the protein. MGMT also provides resistance of tumours to alkylating agents used in cancer chemotherapy and its inactivation is therefore of particular clinical importance. We describe a post-DNA synthesis strategy which exploits the novel, modified base 2-amino-6-methylsulfonylpurine and allows access for the first time to a wide variety of oligodeoxyribonucleotides (ODNs) containing O(6)-alkylguanines. One such ODN containing O(6)-(4-bromothenyl)guanine is the most potent inactivator described to date with an IC(50) of 0.1 nM
Kinetic Characterization of Salmonella FliK-FlhB Interactions Demonstrates Complexity of the Type III Secretion Substrate-Specificity Switch
The bacterial flagellum is a complex macromolecular machine consisting of more than 20000 proteins, most of which must be exported from the cell via a dedicated Type III secretion apparatus. At a defined point in flagellar morphogenesis, hook completion is sensed and the apparatus switches substrate specificity type from rod and hook proteins to filament ones. How the switch works is a subject of intense interest. FIiK and F1hBs play central roles. In the present study, two optical biosensing methods were used to characterize FIiK-F1hB interactions using wild-type and two variant FlhBs from mutants with severe flagellar structural defects. Binding was found to be complex with fast and slow association and dissociation components. Surprisingly, wild-type and variant FlhBs had similar kinetic profiles and apparent affinities, which ranged between I and 10.5 μM, suggesting that the specificity switch is more complex than presently understood. Other binding experiments provided evidence for a conformational change after binding. Liquid chromatography-mass spectrometry (LC-MS) and NMR experiments were performed to identify a cyclic intermediate product whose existence supports the mechanism of autocatalytic cleavage at FlhB residue N269. The present results show that while autocatalytic cleavage is necessary for proper substrate specificity switching, it does not result in an altered interaction with FIiK. strongly suggesting the involvement of other proteins in the mechanism
- …