4,236 research outputs found

    Models for the Effects of G-seat Cuing on Roll-axis Tracking Performance

    Get PDF
    Including whole-body motion in a flight simulator improves performance for a variety of tasks requiring a pilot to compensate for the effects of unexpected disturbances. A possible mechanism for this improvement is that whole-body motion provides high derivative vehicle state information whic allows the pilot to generate more lead in responding to the external disturbances. During development of motion simulating algorithms for an advanced g-cuing system it was discovered that an algorithm based on aircraft roll acceleration producted little or no performance improvement. On the other hand, algorithms based on roll position or roll velocity produced performance equivalent to whole-body motion. The analysis and modeling conducted at both the sensory system and manual control performance levels to explain the above results are described

    Experimental demonstration of a measurement-based realisation of a quantum channel

    Get PDF
    We introduce and experimentally demonstrate a method for realising a quantum channel using the measurement-based model. Using a photonic setup and modifying the bases of single-qubit measurements on a four-qubit entangled cluster state, representative channels are realised for the case of a single qubit in the form of amplitude and phase damping channels. The experimental results match the theoretical model well, demonstrating the successful performance of the channels. We also show how other types of quantum channels can be realised using our approach. This work highlights the potential of the measurement-based model for realising quantum channels which may serve as building blocks for simulations of realistic open quantum systems.Comment: 8 pages, 4 figure

    NOSS altimeter algorithm specifications

    Get PDF
    A description of all algorithms required for altimeter processing is given. Each description includes title, description, inputs/outputs, general algebraic sequences and data volume. All required input/output data files are described and the computer resources required for the entire altimeter processing system were estimated. The majority of the data processing requirements for any radar altimeter of the Seasat-1 type are scoped. Additions and deletions could be made for the specific altimeter products required by other projects

    Splitting Proofs for Interpolation

    Full text link
    We study interpolant extraction from local first-order refutations. We present a new theoretical perspective on interpolation based on clearly separating the condition on logical strength of the formula from the requirement on the com- mon signature. This allows us to highlight the space of all interpolants that can be extracted from a refutation as a space of simple choices on how to split the refuta- tion into two parts. We use this new insight to develop an algorithm for extracting interpolants which are linear in the size of the input refutation and can be further optimized using metrics such as number of non-logical symbols or quantifiers. We implemented the new algorithm in first-order theorem prover VAMPIRE and evaluated it on a large number of examples coming from the first-order proving community. Our experiments give practical evidence that our work improves the state-of-the-art in first-order interpolation.Comment: 26th Conference on Automated Deduction, 201

    Numerical study of surface-induced reorientation and smectic layering in a nematic liquid crystal

    Full text link
    Surface-induced profiles of both nematic and smectic order parameters in a nematic liquid crystal, ranging from an orienting substrate to "infinity", were evaluated numerically on base of an extended Landau theory. In order to obtain a smooth behavior of the solutions at "infinity" a boundary energy functional was derived by linearizing the Landau energy around its equilibrium solutions. We find that the intrinsic wave number of the smectic structure, which plays the role of a coupling between nematic and smectic order, strongly influences the director reorientation. Whereas the smectic order is rapidly decaying when moving away from the surface, the uniaxial nematic order parameter shows an oscillatory behavior close to the substrate, accompanied by a non-zero local biaxiality.Comment: LaTeX, 17 pages, with 4 postscript figure

    Evidence for existence of many pure ground states in 3d ±J\pm J Spin Glasses

    Full text link
    Ground states of 3d EA Ising spin glasses are calculated for sizes up to 14314^3 using a combination of genetic algorithms and cluster-exact approximation . The distribution P(q)P(|q|) of overlaps is calculated. For increasing size the width of P(q)P(|q|) converges to a nonzero value, indicating that many pure ground states exist for short range Ising spin glasses.Comment: 4 pages, 3 figures, 2 tables, 16 reference

    Finite-Size Scaling of the Domain Wall Entropy Distributions for the 2D ±J\pm J Ising Spin Glass

    Full text link
    The statistics of domain walls for ground states of the 2D Ising spin glass with +1 and -1 bonds are studied for L×LL \times L square lattices with L48L \le 48, and pp = 0.5, where pp is the fraction of negative bonds, using periodic and/or antiperiodic boundary conditions. When LL is even, almost all domain walls have energy EdwE_{dw} = 0 or 4. When LL is odd, most domain walls have EdwE_{dw} = 2. The probability distribution of the entropy, SdwS_{dw}, is found to depend strongly on EdwE_{dw}. When Edw=0E_{dw} = 0, the probability distribution of Sdw|S_{dw}| is approximately exponential. The variance of this distribution is proportional to LL, in agreement with the results of Saul and Kardar. For Edw=k>0E_{dw} = k > 0 the distribution of SdwS_{dw} is not symmetric about zero. In these cases the variance still appears to be linear in LL, but the average of SdwS_{dw} grows faster than L\sqrt{L}. This suggests a one-parameter scaling form for the LL-dependence of the distributions of SdwS_{dw} for k>0k > 0.Comment: 13 page

    Strong Enhancement of Superconducting Correlation in a Two-Component Fermion Gas

    Full text link
    We study high-density electron-hole (e-h) systems with the electron density slightly larger than the hole density. We find a new superconducting phase, in which the excess electrons form Cooper pairs moving in an e-h BCS phase. The coexistence of the e-h and e-e orders is possible because e and h have opposite charges, whereas analogous phases are impossible in the case of two fermion species that have the same charge or are neutral. Most strikingly, the e-h order enhances the superconducting e-h order parameter by more than one order of magnitude as compared with that given by the BCS formula, for the same value of the effective e-e attractive potential \lambda^{ee}. This new phase should be observable in an e-h system created by photoexcitation in doped semiconductors at low temperatures.Comment: 5 pages including 5 PostScript figure

    Tunneling spectra of strongly coupled superconductors: Role of dimensionality

    Full text link
    We investigate numerically the signatures of collective modes in the tunneling spectra of superconductors. The larger strength of the signatures observed in the high-Tc superconductors, as compared to classical low-Tc materials, is explained by the low dimensionality of these layered compounds. We also show that the strong-coupling structures are dips (zeros in the d2I/dV2 spectrum) in d-wave superconductors, rather than the steps (peaks in d2I/dV2) observed in classical s-wave superconductors. Finally we question the usefulness of effective density of states models for the analysis of tunneling data in d-wave superconductors.Comment: 8 pages, 6 figure

    Experimentally exploring compressed sensing quantum tomography

    Get PDF
    In the light of the progress in quantum technologies, the task of verifying the correct functioning of processes and obtaining accurate tomographic information about quantum states becomes increasingly important. Compressed sensing, a machinery derived from the theory of signal processing, has emerged as a feasible tool to perform robust and significantly more resource-economical quantum state tomography for intermediate-sized quantum systems. In this work, we provide a comprehensive analysis of compressed sensing tomography in the regime in which tomographically complete data is available with reliable statistics from experimental observations of a multi-mode photonic architecture. Due to the fact that the data is known with high statistical significance, we are in a position to systematically explore the quality of reconstruction depending on the number of employed measurement settings, randomly selected from the complete set of data, and on different model assumptions. We present and test a complete prescription to perform efficient compressed sensing and are able to reliably use notions of model selection and cross-validation to account for experimental imperfections and finite counting statistics. Thus, we establish compressed sensing as an effective tool for quantum state tomography, specifically suited for photonic systems.Comment: 12 pages, 5 figure
    corecore