2,190 research outputs found

    Two-photon interference between disparate sources for quantum networking

    Get PDF
    Quantum networks involve entanglement sharing between multiple users. Ideally, any two users would be able to connect regardless of the type of photon source they employ, provided they fulfill the requirements for two-photon interference. From a theoretical perspective, photons coming from different origins can interfere with a perfect visibility, provided they are made indistinguishable in all degrees of freedom. Previous experimental demonstrations of such a scenario have been limited to photon wavelengths below 900 nm, unsuitable for long distance communication, and suffered from low interference visibility. We report two-photon interference using two disparate heralded single photon sources, which involve different nonlinear effects, operating in the telecom wavelength range. The measured visibility of the two-photon interference is 80+/-4%, which paves the way to hybrid universal quantum networks

    Pressure-induced amorphization and polyamorphism in one-dimensional single crystal TiO2 nanomaterials

    Full text link
    The structural phase transitions of single crystal TiO2-B nanoribbons were investigated in-situ at high-pressure using the synchrotron X-ray diffraction and the Raman scattering. Our results have shown a pressure-induced amorphization (PIA) occurred in TiO2-B nanoribbons upon compression, resulting in a high density amorphous (HDA) form related to the baddeleyite structure. Upon decompression, the HDA form transforms to a low density amorphous (LDA) form while the samples still maintain their pristine nanoribbon shape. HRTEM imaging reveals that the LDA phase has an {\alpha}-PbO2 structure with short range order. We propose a homogeneous nucleation mechanism to explain the pressure-induced amorphous phase transitions in the TiO2-B nanoribbons. Our study demonstrates for the first time that PIA and polyamorphism occurred in the one-dimensional (1D) TiO2 nanomaterials and provides a new method for preparing 1D amorphous nanomaterials from crystalline nanomaterials.Comment: 4 figure

    Nesting properties and anomalous band effect in MgB2

    Full text link
    First principle FLAPW band calculations of the new superconductor MgB2 were performed and the polarization function P12(Q) between the two p-bands mainly formed of boron pz-orbital was calculated. We found that P12(Q) is substantially enhanced around Q=(0,0,p/c), which supports the two-band mechanism of superconductivity for MgB2. P12(Q) peaks at Qz ~ 0.3(2p/c) and Qz \~ 0.5(2p/c). These two peaks are related to the nesting of these Fermi surfaces, but significantly deviates from the position expected from the simplest tight-binding bands for the p-bands. From the calculations for different lattice parameters, we have found significant dependences on the isotopic species of B and on the pressure effect of the polarization function in accordance with the respective changes of Tc in the above-mentioned framework.Comment: 15 pages, 7 graphs. to be published in J. Phys. Soc. Jpn. 70_, No.

    Predictors of oral health-related quality of life in patients following stroke

    Full text link

    Random Fixed Point of Three-Dimensional Random-Bond Ising Models

    Full text link
    The fixed-point structure of three-dimensional bond-disordered Ising models is investigated using the numerical domain-wall renormalization-group method. It is found that, in the +/-J Ising model, there exists a non-trivial fixed point along the phase boundary between the paramagnetic and ferromagnetic phases. The fixed-point Hamiltonian of the +/-J model numerically coincides with that of the unfrustrated random Ising models, strongly suggesting that both belong to the same universality class. Another fixed point corresponding to the multicritical point is also found in the +/-J model. Critical properties associated with the fixed point are qualitatively consistent with theoretical predictions.Comment: 4 pages, 5 figures, to be published in Journal of the Physical Society of Japa

    Proximity effect in ultrathin Pb/Ag multilayers within the Cooper limit

    Full text link
    We report on transport and tunneling measurements performed on ultra-thin Pb/Ag (strong coupled superconductor/normal metal) multilayers evaporated by quench condensation. The critical temperature and energy gap of the heterostructures oscillate with addition of each layer, demonstrating the validity of the Cooper limit model in the case of multilayers. We observe excellent agreement with a simple theory for samples with layer thickness larger than 30\AA . Samples with single layers thinner than 30\AA deviate from the Cooper limit theory. We suggest that this is due to the "inverse proximity effect" where the normal metal electrons improve screening in the superconducting ultrathin layer and thus enhance the critical temperature.Comment: 4 pages, 4 figure

    Boron Isotope Effect in Superconducting MgB2_2

    Full text link
    We report the preparation method of, and boron isotope effect for MgB2_2, a new binary intermetallic superconductor with a remarkably high superconducting transition temperature TcT_c(10^{10}B) = 40.2 K. Measurements of both temperature dependent magnetization and specific heat reveal a 1.0 K shift in TcT_c between Mg11^{11}B2_2 and Mg10^{10}B2_2. Whereas such a high transition temperature might imply exotic coupling mechanisms, the boron isotope effect in MgB2_2 is consistent with the material being a phonon-mediated BCS superconductor.Comment: One figure and related discussion adde

    Off-Equilibrium Dynamics in Finite-Dimensional Spin Glass Models

    Full text link
    The low temperature dynamics of the two- and three-dimensional Ising spin glass model with Gaussian couplings is investigated via extensive Monte Carlo simulations. We find an algebraic decay of the remanent magnetization. For the autocorrelation function C(t,tw)=[]avC(t,t_w)=[]_{av} a typical aging scenario with a t/twt/t_w scaling is established. Investigating spatial correlations we find an algebraic growth law ξ(tw)∼twα(T)\xi(t_w)\sim t_w^{\alpha(T)} of the average domain size. The spatial correlation function G(r,tw)=[<Si(tw)Si+r(tw)>2]avG(r,t_w)=[< S_i(t_w)S_{i+r}(t_w)>^2]_{av} scales with r/ξ(tw)r/\xi(t_w). The sensitivity of the correlations in the spin glass phase with respect to temperature changes is examined by calculating a time dependent overlap length. In the two dimensional model we examine domain growth with a new method: First we determine the exact ground states of the various samples (of system sizes up to 100×100100\times 100) and then we calculate the correlations between this state and the states generated during a Monte Carlo simulation.Comment: 38 pages, RevTeX, 14 postscript figure
    • …
    corecore