6,732 research outputs found

    Experimental demonstration of a measurement-based realisation of a quantum channel

    Get PDF
    We introduce and experimentally demonstrate a method for realising a quantum channel using the measurement-based model. Using a photonic setup and modifying the bases of single-qubit measurements on a four-qubit entangled cluster state, representative channels are realised for the case of a single qubit in the form of amplitude and phase damping channels. The experimental results match the theoretical model well, demonstrating the successful performance of the channels. We also show how other types of quantum channels can be realised using our approach. This work highlights the potential of the measurement-based model for realising quantum channels which may serve as building blocks for simulations of realistic open quantum systems.Comment: 8 pages, 4 figure

    Two-photon interference between disparate sources for quantum networking

    Get PDF
    Quantum networks involve entanglement sharing between multiple users. Ideally, any two users would be able to connect regardless of the type of photon source they employ, provided they fulfill the requirements for two-photon interference. From a theoretical perspective, photons coming from different origins can interfere with a perfect visibility, provided they are made indistinguishable in all degrees of freedom. Previous experimental demonstrations of such a scenario have been limited to photon wavelengths below 900 nm, unsuitable for long distance communication, and suffered from low interference visibility. We report two-photon interference using two disparate heralded single photon sources, which involve different nonlinear effects, operating in the telecom wavelength range. The measured visibility of the two-photon interference is 80+/-4%, which paves the way to hybrid universal quantum networks

    Finite-Size Scaling of the Domain Wall Entropy Distributions for the 2D ±J\pm J Ising Spin Glass

    Full text link
    The statistics of domain walls for ground states of the 2D Ising spin glass with +1 and -1 bonds are studied for L×LL \times L square lattices with L≤48L \le 48, and pp = 0.5, where pp is the fraction of negative bonds, using periodic and/or antiperiodic boundary conditions. When LL is even, almost all domain walls have energy EdwE_{dw} = 0 or 4. When LL is odd, most domain walls have EdwE_{dw} = 2. The probability distribution of the entropy, SdwS_{dw}, is found to depend strongly on EdwE_{dw}. When Edw=0E_{dw} = 0, the probability distribution of ∣Sdw∣|S_{dw}| is approximately exponential. The variance of this distribution is proportional to LL, in agreement with the results of Saul and Kardar. For Edw=k>0E_{dw} = k > 0 the distribution of SdwS_{dw} is not symmetric about zero. In these cases the variance still appears to be linear in LL, but the average of SdwS_{dw} grows faster than L\sqrt{L}. This suggests a one-parameter scaling form for the LL-dependence of the distributions of SdwS_{dw} for k>0k > 0.Comment: 13 page

    Experimentally exploring compressed sensing quantum tomography

    Get PDF
    In the light of the progress in quantum technologies, the task of verifying the correct functioning of processes and obtaining accurate tomographic information about quantum states becomes increasingly important. Compressed sensing, a machinery derived from the theory of signal processing, has emerged as a feasible tool to perform robust and significantly more resource-economical quantum state tomography for intermediate-sized quantum systems. In this work, we provide a comprehensive analysis of compressed sensing tomography in the regime in which tomographically complete data is available with reliable statistics from experimental observations of a multi-mode photonic architecture. Due to the fact that the data is known with high statistical significance, we are in a position to systematically explore the quality of reconstruction depending on the number of employed measurement settings, randomly selected from the complete set of data, and on different model assumptions. We present and test a complete prescription to perform efficient compressed sensing and are able to reliably use notions of model selection and cross-validation to account for experimental imperfections and finite counting statistics. Thus, we establish compressed sensing as an effective tool for quantum state tomography, specifically suited for photonic systems.Comment: 12 pages, 5 figure

    Statistics of lowest excitations in two dimensional Gaussian spin glasses

    Get PDF
    A detailed investigation of lowest excitations in two-dimensional Gaussian spin glasses is presented. We show the existence of a new zero-temperature exponent lambda describing the relative number of finite-volume excitations with respect to large-scale ones. This exponent yields the standard thermal exponent of droplet theory theta through the relation, theta=d(lambda-1). Our work provides a new way to measure the thermal exponent theta without any assumption about the procedure to generate typical low-lying excitations. We find clear evidence that theta < theta_{DW} where theta_{DW} is the thermal exponent obtained in domain-wall theory showing that MacMillan excitations are not typical.Comment: 4 pages, 3 figures, (v2) revised version, (v3) corrected typo

    Evidence for existence of many pure ground states in 3d ±J\pm J Spin Glasses

    Full text link
    Ground states of 3d EA Ising spin glasses are calculated for sizes up to 14314^3 using a combination of genetic algorithms and cluster-exact approximation . The distribution P(∣q∣)P(|q|) of overlaps is calculated. For increasing size the width of P(∣q∣)P(|q|) converges to a nonzero value, indicating that many pure ground states exist for short range Ising spin glasses.Comment: 4 pages, 3 figures, 2 tables, 16 reference

    Thermal Model Calibration for Minor Planets Observed with Wide-Field Infrared Survey Explorer/Neowise

    Get PDF
    With the Wide-field Infrared Survey Explorer (WISE), we have observed over 157,000 minor planets. Included in these are a number of near-Earth objects, main-belt asteroids, and irregular satellites which have well measured physical properties (via radar studies and in situ imaging) such as diameters. We have used these objects to validate models of thermal emission and reflected sunlight using the WISE measurements, as well as the color corrections derived in Wright et al. for the four WISE bandpasses as a function of effective temperature. We have used 50 objects with diameters measured by radar or in situ imaging to characterize the systematic errors implicit in using the WISE data with a faceted spherical near-Earth asteroid thermal model (NEATM) to compute diameters and albedos. By using the previously measured diameters and H magnitudes with a spherical NEATM model, we compute the predicted fluxes (after applying the color corrections given in Wright et al.) in each of the four WISE bands and compare them to the measured magnitudes. We find minimum systematic flux errors of 5%-10%, and hence minimum relative diameter and albedo errors of ~10% and ~20%, respectively. Additionally, visible albedos for the objects are computed and compared to the albedos at 3.4 μm and 4.6 μm, which contain a combination of reflected sunlight and thermal emission for most minor planets observed by WISE. Finally, we derive a linear relationship between subsolar temperature and effective temperature, which allows the color corrections given in Wright et al. to be used for minor planets by computing only subsolar temperature instead of a faceted thermophysical model. The thermal models derived in this paper are not intended to supplant previous measurements made using radar or spacecraft imaging; rather, we have used them to characterize the errors that should be expected when computing diameters and albedos of minor planets observed by WISE using a spherical NEATM model

    Low-Temperature Excitations of Dilute Lattice Spin Glasses

    Full text link
    A new approach to exploring low-temperature excitations in finite-dimensional lattice spin glasses is proposed. By focusing on bond-diluted lattices just above the percolation threshold, large system sizes LL can be obtained which lead to enhanced scaling regimes and more accurate exponents. Furthermore, this method in principle remains practical for any dimension, yielding exponents that so far have been elusive. This approach is demonstrated by determining the stiffness exponent for dimensions d=3d=3, d=6d=6 (the upper critical dimension), and d=7d=7. Key is the application of an exact reduction algorithm, which eliminates a large fraction of spins, so that the reduced lattices never exceed ∼103\sim10^3 variables for sizes as large as L=30 in d=3d=3, L=9 in d=6d=6, or L=8 in d=7d=7. Finite size scaling analysis gives y3=0.24(1)y_3=0.24(1) for d=3d=3, significantly improving on previous work. The results for d=6d=6 and d=7d=7, y6=1.1(1)y_6=1.1(1) and y7=1.24(5)y_7=1.24(5), are entirely new and are compared with mean-field predictions made for d>=6.Comment: 7 pages, LaTex, 7 ps-figures included, added result for stiffness in d=7, as to appear in Europhysics Letters (see http://www.physics.emory.edu/faculty/boettcher/ for related information

    Sharper and Simpler Nonlinear Interpolants for Program Verification

    Full text link
    Interpolation of jointly infeasible predicates plays important roles in various program verification techniques such as invariant synthesis and CEGAR. Intrigued by the recent result by Dai et al.\ that combines real algebraic geometry and SDP optimization in synthesis of polynomial interpolants, the current paper contributes its enhancement that yields sharper and simpler interpolants. The enhancement is made possible by: theoretical observations in real algebraic geometry; and our continued fraction-based algorithm that rounds off (potentially erroneous) numerical solutions of SDP solvers. Experiment results support our tool's effectiveness; we also demonstrate the benefit of sharp and simple interpolants in program verification examples
    • …
    corecore