502 research outputs found

    The relationship between the insulin-like growth factor-1 axis, weight loss, an inflammation-based score and survival in patients with inoperable non-small cell lung cancer

    Get PDF
    <b>Background & aims:</b> The involvement of a systemic inflammatory response, as evidenced by the Glasgow Prognostic Score (GPS), is associated with weight loss and poor outcome in patients with non-small cell lung cancer. There is good evidence that nutritional and functional decline in patients with advanced malignant disease is associated with catabolic changes in metabolism. However, defects in anabolism may also contribute towards nutritional decline in patients with cancer. The aim of the present study was to examine the relationship between IGF-1 and IGFBP-3, performance status, mGPS and survival in patients with inoperable NSCLC. <b>Methods:</b> 56 patients with inoperable NSCLC were studied. The plasma concentrations of IGF-1, IGFBP-3 and leptin were measured using ELISA and RIA. <b>Results:</b> The patients were predominantly male (61%), over 60 years old (80%), with advanced (stage III or IV) disease (98%), with a BMI≥20 (84%), an ECOG-ps of 0 or 1 (79%), a haemoglobin (59%) and white cell count (79%) in the reference range. On follow-up 43 patients died of their cancer. On univariate analysis, BMI (p<0.05), Stage (p<0.05), ECOG-ps (p<0.05), haemoglobin (p<0.05), white cell count (p<0.05) and mGPS (p<0.05) were associated with cancer specific survival. There was no association between age, sex, treatment, IGF-1, IGFBP-3, IGF-1:IGFBP-3 ratio, or leptin and cancer specific survival. With an increasing mGPS concentrations of haemoglobin (p<0.005) and IGFBP-3 (p<0.05) decreased. mGPS was not associated with either IGF-1(p>0.20), or leptin (p>0.20). <b>Conclusions:</b> In summary, the results of this study suggest that anabolism (IGF-1 axis) does not play a significant role in the relationship between nutritional and functional decline, systemic inflammation and poor survival in patients with inoperable NSCLC

    Two-Band-Type Superconducting Instability in MgB2

    Full text link
    Using the tight-binding method for the π\pi-bands in MgB2_2, the Hubbard on-site Coulomb interaction on two inequivalent boron pzp_z-orbitals is transformed into expressions in terms of π\pi-band operators. For scattering processes relevant to the problemin which a wave vector {\bf q} is parallel to z^\hat{z}, it is found to take a relatively simple form consisting of intra-band Coulomb scattering, interband pair scattering etc. with large constant coupling constants. This allows to get a simple expression for the amplitude of interband pair scattering between two π\pi-bands, which diverges if the interband polarization function in it becomes large enough.The latter was approximately evaluated and found to be largely enhanced in the band structure in MgB2_2. These results lead to a divergent interband pair scattering, meaning two-band-type superconducting instability with enhanced TcT_c. Adding a subsidiary BCS attractive interaction in each band into consideration, a semi-quantitative gap equation is given, and TcT_c and isotope exponent α\alpha are derived. The present instability is asserted to be the origin of high TcT_c in MgB2_2.Comment: 4 pages, to be published in J. Phys. Soc. Jpn. vol. 70, No.

    Nesting properties and anomalous band effect in MgB2

    Full text link
    First principle FLAPW band calculations of the new superconductor MgB2 were performed and the polarization function P12(Q) between the two p-bands mainly formed of boron pz-orbital was calculated. We found that P12(Q) is substantially enhanced around Q=(0,0,p/c), which supports the two-band mechanism of superconductivity for MgB2. P12(Q) peaks at Qz ~ 0.3(2p/c) and Qz \~ 0.5(2p/c). These two peaks are related to the nesting of these Fermi surfaces, but significantly deviates from the position expected from the simplest tight-binding bands for the p-bands. From the calculations for different lattice parameters, we have found significant dependences on the isotopic species of B and on the pressure effect of the polarization function in accordance with the respective changes of Tc in the above-mentioned framework.Comment: 15 pages, 7 graphs. to be published in J. Phys. Soc. Jpn. 70_, No.

    MicroMAPS CO Measurements over North America and Europe during Summer-Fall 2004

    Get PDF
    The MicroMAPS instrument is a nadir-viewing, gas filter-correlated radiometer which operating in the 4.67 micrometer fundamental band of carbon monoxide. Originally designed and built for a space mission, this CO remote sensor is being flown in support of satellite validation and science instrument demonstrations for potential UAV applications. The MicroMAPS instrument system, as flown on Proteus, was designed by a senior student design project in the Aerospace Engineering Department, Virginia Tech, in Blacksburg, VA. and then revised by Systems Engineers at NASA Langley. The final instrument system was integrated and tested at NASA LaRC, in partnership with Scaled Composites and Virginia Space Grant Consortium (VSGC). VSGC supervised the fabrication of the nacelle that houses the instrument system on the right rear tail boom of Proteus. Full system integration and flight testing was performed at Scaled Composites, in Mojave, in June 2004. Its successful performance enabled participation in four international science missions on Proteus: in 2004, INTEX -NA over eastern North America in July, ADRIEX over the Mediterranean region and EAQUATE over the United Kingdom region in September,and TWP-ICE over Darwin, Australia and the surrounding oceans in Jan-Feb 2006. These flights resulted in nearly 300 hours of data. In parallel with the engineering developments, theoretical radiative transfer models were developed specifically for the MicroMAPS instrument system at the University of Virginia, Mechanical Engineering Department by a combined undergraduate and graduate student team. With technical support from Resonance Ltd. in June 2005, the MicroMAPS instrument was calibrated for the conditions under which the Summer-Fall 2004 flights occurred. The analyses of the calibration data, combined with the theoretical radiative transfer models, provide the first data reduction for the science flights reported here. These early results and comparisons with profile data from the NASA DC-8, the coincident AIRS CO retrievals, and selected CO measurements from the MOZAIC program will be presented
    • …
    corecore