447 research outputs found

    Earth as Humans’ Habitat: Global Climate Change and the Health of Populations

    Get PDF
    Human-induced climate change, with such rapid and continuing global-scale warming, is historically unprecedented and signifies that human pressures on Earth’s life-supporting natural systems now exceed the planet’s bio-geo-capacity. The risks from climate change to health and survival in populations are diverse, as are the social and political ramifications. Although attributing observed health changes in a population to the recent climatic change is difficult, a coherent pattern of climate- and weather-associated changes is now evident in many regions of the world. The risks impinge unevenly, especially on poorer and vulnerable regions, and are amplified by pre-existing high rates of climate-sensitive diseases and conditions. If, as now appears likely, the world warms by 3-5oC by 2100, the health consequences, directly and via massive social and economic disruption, will be severe. The health sector has an important message to convey, comparing the health risks and benefits of enlightened action to avert climate change and to achieve sustainable ways of living versus the self-interested or complacent inaction

    Vulnerable populations in the Arctic

    Get PDF

    Health risks, present and future, from global climate change

    No full text
    There is now no serious scientific debate: human actions are changing the world’s climate, and are set to do so at an increasing rate in coming decades. Urgent action is now required to reduce emissions of carbon dioxide (the dominant long acting greenhouse gas), if global temperature rises are not to exceed 2°C—the International Energy Authority warns that “the door to 2°C is closing.” Indeed, emissions must be hugely curtailed within just two decades, and then zero net emissions achieved by later this century, assisted by increased biosequestration of carbon dioxide from the atmosphere. However, emissions continue to rise, having increased by 49% since 1990 and by an accelerated annual rate of 5.9% in 2010

    Comparative assessment of the effects of climate change on heat- and cold-related mortality in the United Kingdom and Australia.

    Get PDF
    BACKGROUND: High and low ambient temperatures are associated with increased mortality in temperate and subtropical climates. Temperature-related mortality patterns are expected to change throughout this century because of climate change. OBJECTIVES: We compared mortality associated with heat and cold in UK regions and Australian cities for current and projected climates and populations. METHODS: Time-series regression analyses were carried out on daily mortality in relation to ambient temperatures for UK regions and Australian cities to estimate relative risk functions for heat and cold and variations in risk parameters by age. Excess deaths due to heat and cold were estimated for future climates. RESULTS: In UK regions, cold-related mortality currently accounts for more than one order of magnitude more deaths than heat-related mortality (around 61 and 3 deaths per 100,000 population per year, respectively). In Australian cities, approximately 33 and 2 deaths per 100,000 population are associated every year with cold and heat, respectively. Although cold-related mortality is projected to decrease due to climate change to approximately 42 and 19 deaths per 100,000 population per year in UK regions and Australian cities, heat-related mortality is projected to increase to around 9 and 8 deaths per 100,000 population per year, respectively, by the 2080s, assuming no changes in susceptibility and structure of the population. CONCLUSIONS: Projected changes in climate are likely to lead to an increase in heat-related mortality in the United Kingdom and Australia over this century, but also to a decrease in cold-related deaths. Future temperature-related mortality will be amplified by aging populations. Health protection from hot weather will become increasingly necessary in both countries, while protection from cold weather will be still needed

    Ecologic analysis of some immune-related disorders, including type 1 diabetes, in Australia: latitude, regional ultraviolet radiation, and disease prevalence

    No full text
    The apparent immune-suppressive effect of ultraviolet radiation (UVR) has suggested that this environmental exposure may influence the development of immune-related disorders. Self-reported prevalence rates of type 1 diabetes mellitus, rheumatoid arthritis (RA) , eczema/dermatitis, and asthma, from the 1995 Australian National Health Survey, were therefore examined by latitude and ambient level of UVR. A positive association of type 1 diabetes mellitus prevalence was found with both increasing southern latitude of residence (r = 0.77 ; p = 0.026) and decreasing regional annual ambient UVR (r = -0.80 ; p = 0.018) ; a 3-fold increase in prevalence from the northernmost region to the southernmost region was evident. In contrast, asthma correlated negatively with latitude (r = -0.72 ; p = 0.046) , although the change in asthma prevalence from the north to the south of Australia was only 0.7-fold. For both RA and eczema/dermatitis, there were no statistically significant associations between latitude/UVR and disease prevalence. These ecologic data provide some support for a previously proposed beneficial effect of UVR on T-helper 1-mediated autoimmune disorders such as type 1 diabetes. The inverse association of type 1 diabetes prevalence with UVR is consistent with that previously reported for another autoimmune disease, multiple sclerosis, in Australia, and also with type 1 diabetes latitudinal gradients in the Northern Hemisphere. The finding also accords with photoimmunologic evidence of UVR-induced immunosuppression and may suggest a beneficial effect of UVR in reducing the incidence of such autoimmune conditions. In light of this study, analytic epidemiologic studies investigating risk of immune disorders in relation to personal UVR exposure in humans are require

    Earth as humans’ habitat: global climate change and the health of populations

    Get PDF
    Human-induced climate change, with such rapid and continuing global-scale warming, is historically unprecedented and signifies that human pressures on Earth’s life-supporting natural systems now exceed the planet’s bio-geo-capacity. The risks from climate change to health and survival in populations are diverse, as are the social and political ramifications. Although attributing observed health changes in a population to the recent climatic change is difficult, a coherent pattern of climate- and weather-associated changes is now evident in many regions of the world. The risks impinge unevenly, especially on poorer and vulnerable regions, and are amplified by pre-existing high rates of climate-sensitive diseases and conditions. If, as now appears likely, the world warms by 3-5 o C by 2100, the health consequences, directly and via massive social and economic disruption, will be severe. The health sector has an important message to convey, comparing the health risks and benefits of enlightened action to avert climate change and to achieve sustainable ways of living versus the self-interested or complacent inactio
    • …
    corecore