114 research outputs found

    Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea

    Get PDF
    Although reduced blood lactate concentrations ([lac−]B) have been observed during whole-body exercise following inspiratory muscle training (IMT), it remains unknown whether the inspiratory muscles are the source of at least part of this reduction. To investigate this, we tested the hypothesis that IMT would attenuate the increase in [lac−]B caused by mimicking, at rest, the breathing pattern observed during high-intensity exercise. Twenty-two physically active males were matched for 85% maximal exercise minute ventilation (V˙Emax) and divided equally into an IMT or a control group. Prior to and following a 6 week intervention, participants performed 10 min of volitional hyperpnoea at the breathing pattern commensurate with 85% V˙Emax

    COVID-19-associated hyperinflammation and escalation of patient care: a retrospective longitudinal cohort study

    Get PDF
    Background: A subset of patients with severe COVID-19 develop a hyperinflammatory syndrome, which might contribute to morbidity and mortality. This study explores a specific phenotype of COVID-19-associated hyperinflammation (COV-HI), and its associations with escalation of respiratory support and survival. / Methods: In this retrospective cohort study, we enrolled consecutive inpatients (aged ≥18 years) admitted to University College London Hospitals and Newcastle upon Tyne Hospitals in the UK with PCR-confirmed COVID-19 during the first wave of community-acquired infection. Demographic data, laboratory tests, and clinical status were recorded from the day of admission until death or discharge, with a minimum follow-up time of 28 days. We defined COV-HI as a C-reactive protein concentration greater than 150 mg/L or doubling within 24 h from greater than 50 mg/L, or a ferritin concentration greater than 1500 μg/L. Respiratory support was categorised as oxygen only, non-invasive ventilation, and intubation. Initial and repeated measures of hyperinflammation were evaluated in relation to the next-day risk of death or need for escalation of respiratory support (as a combined endpoint), using a multi-level logistic regression model. / Findings: We included 269 patients admitted to one of the study hospitals between March 1 and March 31, 2020, among whom 178 (66%) were eligible for escalation of respiratory support and 91 (34%) patients were not eligible. Of the whole cohort, 90 (33%) patients met the COV-HI criteria at admission. Despite having a younger median age and lower median Charlson Comorbidity Index scores, a higher proportion of patients with COV-HI on admission died during follow-up (36 [40%] of 90 patients) compared with the patients without COV-HI on admission (46 [26%] of 179). Among the 178 patients who were eligible for full respiratory support, 65 (37%) met the definition for COV-HI at admission, and 67 (74%) of the 90 patients whose respiratory care was escalated met the criteria by the day of escalation. Meeting the COV-HI criteria was significantly associated with the risk of next-day escalation of respiratory support or death (hazard ratio 2·24 [95% CI 1·62–2·87]) after adjustment for age, sex, and comorbidity. / Interpretation: Associations between elevated inflammatory markers, escalation of respiratory support, and survival in people with COVID-19 indicate the existence of a high-risk inflammatory phenotype. COV-HI might be useful to stratify patient groups in trial design. / Funding: None

    Intracellular Trafficking of the Amyloid β-Protein Precursor (APP) Regulated by Novel Function of X11-Like

    Get PDF
    Background: Amyloid beta (A beta), a causative peptide of Alzheimer's disease, is generated by intracellular metabolism of amyloid beta-protein precursor (APP). In general, mature APP (mAPP, N- and O-glycosylated form) is subject to successive cleavages by alpha- or beta-, and gamma-secretases in the late protein secretory pathway and/or at plasma membrane, while immature APP (imAPP, N-glycosylated form) locates in the early secretory pathway such as endoplasmic reticulum or cis-Golgi, in which imAPP is not subject to metabolic cleavages. X11-like (X11L) is a neural adaptor protein composed of a phosphotyrosine-binding (PTB) and two C-terminal PDZ domains. X11L suppresses amyloidogenic cleavage of mAPP by direct binding of X11L through its PTB domain, thereby generation of A beta lowers. X11L expresses another function in the regulation of intracellular APP trafficking. Methodology: In order to analyze novel function of X11L in intracellular trafficking of APP, we performed a functional dissection of X11L. Using cells expressing various domain-deleted X11L mutants, intracellular APP trafficking was examined along with analysis of APP metabolism including maturation (O-glycosylation), processing and localization of APP. Conclusions: X11L accumulates imAPP into the early secretory pathway by mediation of its C-terminal PDZ domains, without being bound to imAPP directly. With this novel function, X11L suppresses overall APP metabolism and results in further suppression of Ab generation. Interestingly some of the accumulated imAPP in the early secretory pathway are likely to appear on plasma membrane by unidentified mechanism. Trafficking of imAPP to plasma membrane is observed in other X11 family proteins, X11 and X11L2, but not in other APP-binding partners such as FE65 and JIP1. It is herein clear that respective functional domains of X11L regulate APP metabolism at multiple steps in intracellular protein secretory pathways

    Plate-based diversity subset screening generation 2: An improved paradigm for high throughput screening of large compound files

    Get PDF
    High throughput screening (HTS) is an effective method for lead and probe discovery that is widely used in industry and academia to identify novel chemical matter and to initiate the drug discovery process. However, HTS can be time-consuming and costly and the use of subsets as an efficient alternative to screening these large collections has been investigated. Subsets may be selected on the basis of chemical diversity, molecular properties, biological activity diversity, or biological target focus. Previously we described a novel form of subset screening: plate-based diversity subset (PBDS) screening, in which the screening subset is constructed by plate selection (rather than individual compound cherry-picking), using algorithms that select for compound quality and chemical diversity on a plate basis. In this paper, we describe a second generation approach to the construction of an updated subset: PBDS2, using both plate and individual compound selection, that has an improved coverage of the chemical space of the screening file, whilst only selecting the same number of plates for screening. We describe the validation of PBDS2 and its successful use in hit and lead discovery. PBDS2 screening became the default mode of singleton (one compound per well) HTS for lead discovery in Pfizer

    Induction of the interleukin 6/ signal transducer and activator of transcription pathway in the lungs of mice sub-chronically exposed to mainstream tobacco smoke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tobacco smoking is associated with lung cancer and other respiratory diseases. However, little is known about the global molecular changes that precede the appearance of clinically detectable symptoms. In this study, the effects of mainstream tobacco smoke (MTS) on global transcription in the mouse lung were investigated.</p> <p>Methods</p> <p>Male C57B1/CBA mice were exposed to MTS from two cigarettes daily, 5 days/week for 6 or 12 weeks. Mice were sacrificed immediately, or 6 weeks following the last cigarette. High density DNA microarrays were used to characterize global gene expression changes in whole lung. Microarray results were validated by Quantitative real-time RT-PCR. Further analysis of protein synthesis and function was carried out for a select set of genes by ELISA and Western blotting.</p> <p>Results</p> <p>Globally, seventy nine genes were significantly differentially expressed following the exposure to MTS. These genes were associated with a number of biological processes including xenobiotic metabolism, redox balance, oxidative stress and inflammation. There was no differential gene expression in mice exposed to smoke and sampled 6 weeks following the last cigarette. Moreover, cluster analysis demonstrated that these samples clustered alongside their respective controls. We observed simultaneous up-regulation of <it>interleukin 6 </it>(<it>IL-6</it>) and its antagonist, <it>suppressor of cytokine signalling </it>(<it>SOCS3</it>) mRNA following 12 weeks of MTS exposure. Analysis by ELISA and Western blotting revealed a concomitant increase in total IL-6 antigen levels and its downstream targets, including phosphorylated signal transducer and activator of transcription 3 (Stat3), basal cell-lymphoma extra large (BCL-XL) and myeloid cell leukemia 1 (MCL-1) protein, in total lung tissue extracts. However, in contrast to gene expression, a subtle decrease in total SOCS3 protein was observed after 12 weeks of MTS exposure.</p> <p>Conclusion</p> <p>Global transcriptional analysis identified a set of genes responding to MTS exposure in mouse lung. These genes returned to basal levels following smoking cessation, providing evidence to support the benefits of smoking cessation. Detailed analyses were undertaken for IL-6 and its associated pathways. Our results provide further insight into the role of these pathways in lung injury and inflammation induced by MTS.</p

    Paleogene Radiation of a Plant Pathogenic Mushroom

    Get PDF
    Background: The global movement and speciation of fungal plant pathogens is important, especially because of the economic losses they cause and the ease with which they are able to spread across large areas. Understanding the biogeography and origin of these plant pathogens can provide insights regarding their dispersal and current day distribution. We tested the hypothesis of a Gondwanan origin of the plant pathogenic mushroom genus Armillaria and the currently accepted premise that vicariance accounts for the extant distribution of the species. Methods: The phylogeny of a selection of Armillaria species was reconstructed based on Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian Inference (BI). A timeline was then placed on the divergence of lineages using a Bayesian relaxed molecular clock approach. Results: Phylogenetic analyses of sequenced data for three combined nuclear regions provided strong support for three major geographically defined clades: Holarctic, South American-Australasian and African. Molecular dating placed the initial radiation of the genus at 54 million years ago within the Early Paleogene, postdating the tectonic break-up of Gondwana. Conclusions: The distribution of extant Armillaria species is the result of ancient long-distance dispersal rather than vicariance due to continental drift. As these finding are contrary to most prior vicariance hypotheses for fungi, our result

    The role of proteomics in depression research

    Get PDF
    Depression is a severe neuropsychiatric disorder affecting approximately 10% of the world population. Despite this, the molecular mechanisms underlying the disorder are still not understood. Novel technologies such as proteomic-based platforms are beginning to offer new insights into this devastating illness, beyond those provided by the standard targeted methodologies. Here, we will show the potential of proteome analyses as a tool to elucidate the pathophysiological mechanisms of depression as well as the discovery of potential diagnostic, therapeutic and disease course biomarkers

    Deciphering the pathogenesis of tendinopathy: a three-stages process

    Get PDF
    Our understanding of the pathogenesis of "tendinopathy" is based on fragmented evidences like pieces of a jigsaw puzzle. We propose a "failed healing theory" to knit these fragments together, which can explain previous observations. We also propose that albeit "overuse injury" and other insidious "micro trauma" may well be primary triggers of the process, "tendinopathy" is not an "overuse injury" per se. The typical clinical, histological and biochemical presentation relates to a localized chronic pain condition which may lead to tendon rupture, the latter attributed to mechanical weakness. Characterization of pathological "tendinotic" tissues revealed coexistence of collagenolytic injuries and an active healing process, focal hypervascularity and tissue metaplasia. These observations suggest a failed healing process as response to a triggering injury. The pathogenesis of tendinopathy can be described as a three stage process: injury, failed healing and clinical presentation. It is likely that some of these "initial injuries" heal well and we speculate that predisposing intrinsic or extrinsic factors may be involved. The injury stage involves a progressive collagenolytic tendon injury. The failed healing stage mainly refers to prolonged activation and failed resolution of the normal healing process. Finally, the matrix disturbances, increased focal vascularity and abnormal cytokine profiles contribute to the clinical presentations of chronic tendon pain or rupture. With this integrative pathogenesis theory, we can relate the known manifestations of tendinopathy and point to the "missing links". This model may guide future research on tendinopathy, until we could ultimately decipher the complete pathogenesis process and provide better treatments
    corecore