26 research outputs found

    Compact, Portable, Thermal-Noise-Limited Optical Cavity with Low Acceleration Sensitivity

    Full text link
    We develop and demonstrate a compact (less than 66 mL) portable Fabry-P\'{e}rot optical reference cavity. A laser locked to the cavity is thermal noise limited at 2×10−142\times10^{-14} fractional frequency stability. Broadband feedback control with an electro-optic modulator enables near thermal-noise-limited phase noise performance from 11 Hz to 1010 kHz offset frequencies. The additional low vibration, temperature, and holding force sensitivity of our design makes it well suited for out-of-the-lab applications such as optically derived low noise microwave generation, compact and mobile optical atomic clocks, and environmental sensing through deployed fiber networks.Comment: 12 pages, 6 figure

    Sustainable Human Presence on the Moon using In Situ Resources

    Get PDF
    New capabilities, technologies and infrastructure must be developed to enable a sustained human presence on the moon and beyond. The key to having this permanent presence is the utilization of in situ resources. To this end, NASA is investigating how in situ resources can be utilized to improve mission success by reducing up-mass, improving safety, reducing risk, and bringing down costs for the overall mission. To ensure that this capability is available when needed, technology development is required now. NASA/Marshall Space Flight Center (MSFC) is supporting this endeavor, along with other NASA centers, by exploring how lunar regolith can be mined for uses such as construction, life support, propulsion, power, and fabrication. Efforts at MSFC include development of lunar regolith simulant for hardware testing and development, extraction of oxygen and other materials from the lunar regolith, production of parts and tools on the moon from local materials or from provisioned feedstocks, and capabilities to show that produced parts are "ready for use". This paper discusses the lunar regolith, how the regolith is being replicated in the development of simulants and possible uses of the regolith

    Chip-Based Laser with 1 Hertz Integrated Linewidth

    Full text link
    Lasers with hertz-level linewidths on timescales up to seconds are critical for precision metrology, timekeeping, and manipulation of quantum systems. Such frequency stability typically relies on bulk-optic lasers and reference cavities, where increased size is leveraged to improve noise performance, but with the trade-off of cost, hand assembly, and limited application environments. On the other hand, planar waveguide lasers and cavities exploit the benefits of CMOS scalability but are fundamentally limited from achieving hertz-level linewidths at longer times by stochastic noise and thermal sensitivity inherent to the waveguide medium. These physical limits have inhibited the development of compact laser systems with frequency noise required for portable optical clocks that have performance well beyond conventional microwave counterparts. In this work, we break this paradigm to demonstrate a compact, high-coherence laser system at 1548 nm with a 1 s integrated linewidth of 1.1 Hz and fractional frequency instability less than 10−14^{-14} from 1 ms to 1 s. The frequency noise at 1 Hz offset is suppressed by 11 orders of magnitude from that of the free-running diode laser down to the cavity thermal noise limit near 1 Hz2^2/Hz, decreasing to 10−3^{-3} Hz2^2/Hz at 4 kHz offset. This low noise performance leverages wafer-scale integrated lasers together with an 8 mL vacuum-gap cavity that employs micro-fabricated mirrors with sub-angstrom roughness to yield an optical QQ of 11.8 billion. Significantly, all the critical components are lithographically defined on planar substrates and hold the potential for parallel high-volume manufacturing. Consequently, this work provides an important advance towards compact lasers with hertz-level linewidths for applications such as portable optical clocks, low-noise RF photonic oscillators, and related communication and navigation systems

    Micro-fabricated mirrors with finesse exceeding one million

    Get PDF
    The Fabry&ndash;Perot resonator is one of the most widely used optical devices, enabling scientific and technological breakthroughs in diverse fields including cavity quantum electrodynamics, optical clocks, precision length metrology, and spectroscopy. Though resonator designs vary widely, all high-end applications benefit from mirrors with the lowest loss and highest finesse possible. Fabrication of the highest-finesse mirrors relies on centuries-old mechanical polishing techniques, which offer losses at the parts-per-million (ppm) level. However, no existing fabrication techniques are able to produce high-finesse resonators with the large range of mirror geometries needed for scalable quantum devices and next-generation compact atomic clocks. In this paper, we introduce a scalable approach to fabricate mirrors with ultrahigh finesse (&ge;106</p

    Photonic chip-based low noise microwave oscillator

    Full text link
    Numerous modern technologies are reliant on the low-phase noise and exquisite timing stability of microwave signals. Substantial progress has been made in the field of microwave photonics, whereby low noise microwave signals are generated by the down-conversion of ultra-stable optical references using a frequency comb. Such systems, however, are constructed with bulk or fiber optics and are difficult to further reduce in size and power consumption. Our work addresses this challenge by leveraging advances in integrated photonics to demonstrate low-noise microwave generation via two-point optical frequency division. Narrow linewidth self-injection locked integrated lasers are stabilized to a miniature Fabry-P\'{e}rot cavity, and the frequency gap between the lasers is divided with an efficient dark-soliton frequency comb. The stabilized output of the microcomb is photodetected to produce a microwave signal at 20 GHz with phase noise of -96 dBc/Hz at 100 Hz offset frequency that decreases to -135 dBc/Hz at 10 kHz offset--values which are unprecedented for an integrated photonic system. All photonic components can be heterogeneously integrated on a single chip, providing a significant advance for the application of photonics to high-precision navigation, communication and timing systems

    Low-noise microwave generation with an air-gap optical reference cavity

    No full text
    We demonstrate a high finesse, microfabricated mirror-based, air-gap cavity with volume less than 1 ml, constructed in an array, that can support low-noise microwave generation through optical frequency division. We use the air-gap cavity in conjunction with a 10 nm bandwidth mode-locked laser to generate low phase noise 10 GHz microwaves, exhibiting a phase noise of −95 and −142 dBc/Hz at 100 Hz and 10 kHz offset frequencies, respectively. This is accomplished using the 2-point lock optical frequency division method, where we exploit 40 dB common-mode rejection of two lasers separated by 1.29 THz and locked to the same air-gap cavity. If used with an octave spanning comb, the air-gap cavity is capable of supporting 10 GHz phase noise below −160 dBc/Hz at 10 kHz offset, a level significantly lower than electronic synthesizers. These results show how extremely small optical reference cavities, operated without the benefit of vacuum enclosures or thermal insulation, can, nonetheless, support state-of-the-art microwave phase noise in compact and portable systems
    corecore