6 research outputs found

    Identification of an alternative triglyceride biosynthesis pathway

    Get PDF
    Triacylglycerols (TAGs) are the main source of stored energy in the body, providing an important substrate pool for mitochondrial beta-oxidation. Imbalances in the amount of TAGs are associated with obesity, cardiac disease and various other pathologies 1,2. In humans, TAGs are synthesized from excess, coenzyme A-conjugated fatty acids by diacylglycerol O-acyltransferases (DGAT1 and DGAT2) 3. In other organisms, this activity is complemented by additional enzymes 4, but whether such alternative pathways exist in humans remains unknown. Here we disrupt the DGAT pathway in haploid human cells and use iterative genetics to reveal an unrelated TAG-synthesizing system composed of a protein we called DIESL (also known as TMEM68, an acyltransferase of previously unknown function) and its regulator TMX1. Mechanistically, TMX1 binds to and controls DIESL at the endoplasmic reticulum, and loss of TMX1 leads to the unconstrained formation of DIESL-dependent lipid droplets. DIESL is an autonomous TAG synthase, and expression of human DIESL in Escherichia coli endows this organism with the ability to synthesize TAG. Although both DIESL and the DGATs function as diacylglycerol acyltransferases, they contribute to the cellular TAG pool under specific conditions. Functionally, DIESL synthesizes TAG at the expense of membrane phospholipids and maintains mitochondrial function during periods of extracellular lipid starvation. In mice, DIESL deficiency impedes rapid postnatal growth and affects energy homeostasis during changes in nutrient availability. We have therefore identified an alternative TAG biosynthetic pathway driven by DIESL under potent control by TMX1. </p

    Parkinson’s disease genes orchestrate mechanisms of mitochondrial quality control

    No full text
    A functional mitochondrial network is cardinal to cellular fitness, and declines in mitochondrial function are linked to neurodegeneration, most notably the motor disorder Parkinson’s disease. Two genes mutated in autosomal recessive juvenile parkinsonism, PARKIN and PINK1, work together to maintain mitochondrial health in vivo. Study over the past decade has revealed that PARKIN and PINK1 constitute a molecular system that recognizes and destroys damaged mitochondria via the autophagy pathway, in a process known as mitophagy. By removing dysfunctional organelles from the reticulum via this quality control mechanism, the PARKIN/PINK1 pathway protects the integrity of the mitochondrial network. The work comprised within this thesis delves into the mechanism of PINK1/PARKIN mitochondrial quality control. Firstly, it is shown that, in addition to mitophagy, PARKIN and PINK1 function in a second quality control mechanism that oversees the removal of damaged mitochondrial components, preserving mitochondrial function in the absence of organellar destruction. Selected, damaged mitochondrial cargo are extracted from the organelle via a class of mitochondrial-derived vesicles (MDVs), which are shuttled to the lysosome for turnover in a manner involving classical membrane fusion factors. Secondly, the work here demonstrates that uncoupling of mitochondria from the endoplasmic reticulum via the destruction of a tethering factor represents an important step in the mitophagic cascade. Together, these findings have furthered our understanding regarding the cellular toolkit that maintains mitochondrial health, and how its deterioration can lead to neurodegenerative disease.Un réseau mitochondrial fonctionnel est critique à la survie cellulaire, et les diminutions de la fonction des mitochondries sont liées à la neurodégénérescence, notamment la maladie de Parkinson. Deux gènes mutés dans le parkinsonisme juvénile autosomique récessif, PARKIN et PINK1, travaillent ensemble pour maintenir la santé mitochondriale in vivo. Au cours de la dernière décennie, des études ont révélé que PARKIN et PINK1 constituent un système moléculaire qui reconnaît et détruit les mitochondries endommagées via l'autophagie; un processus appelé mitophagie. En éliminant les organites dysfonctionnels via ce mécanisme de contrôle de la qualité, PARKIN et PINK1 protègent l'intégrité du réseau mitochondrial, ce qui est le sujet de cette thèse. Tout d'abord, il est démontré que, en plus de la mitophagie, PARKIN et PINK1 fonctionnent dans un deuxième mécanisme de contrôle de la qualité qui surveille l'élimination des cargos mitochondriales endommagées, en préservant la fonction mitochondriale en l'absence de destruction organellaire. Les cargos sélectionnées et endommagées sont extraits de l’organite par une classe de vésicules dérivées de mitochondries (VDMs) qui sont transportées au lysosome d'une manière impliquant des facteurs classiques de fusion membranaire. Deuxièmement, le travail ici démontre que le désaccouplement entre les mitochondries et le réticulum endoplasmique par la destruction d'un facteur d'attachement représente une étape importante dans la cascade mitophagique. Ensemble, ces résultats ont favorisé notre compréhension de la trousse d'outils cellulaire qui maintient la santé mitochondriale et de la façon dont sa détérioration peut conduire à une maladie neurodégénérative
    corecore