9,146 research outputs found

    Active-Sterile Neutrino Transformation and r-Process Nucleosynthesis

    Get PDF
    The type II supernova is considered as a candidate site for the production of heavy elements. Since the supernova produces an intense neutrino flux, neutrino scattering processes will impact element formation. We examine active-sterile neutrino conversion in this environment and find that it may help to produce the requisite neutron-to-seed ratio for synthesis of the r-process elements.Comment: 5 pages including 2 figures, to appear in the Proceedings of the Conference on the Intersections of Nuclear and Particle Physics 200

    Nucleosynthesis in the Outflow from Gamma Ray Burst Accretion Disks

    Full text link
    We examine the nucleosynthesis products that are produced in the outflow from rapidly accreting disks. We find that the type of element synthesis varies dramatically with the degree of neutrino trapping in the disk and therefore the accretion rate of the disk. Disks with relatively high accretion rates such as 10 M_solar/s can produce very neutron rich nuclei that are found in the r process. Disks with more moderate accretion rates can produce copious amounts of Nickel as well as the light elements such as Lithium and Boron. Disks with lower accretion rates such as 0.1 M_solar/s produce large amounts of Nickel as well as some unusual nuclei such as Ti-49, Sc-45, Zn-64, and Mo-92. This wide array of potential nucleosynthesis products is due to the varying influence of electron neutrinos and antineutrinos emitted from the disk on the neutron-to-proton ratio in the outflow. We use a parameterization for the outflow and discuss our results in terms of entropy and outflow acceleration.Comment: 12 pages, 12 figures; submitted to Ap

    Neutrino Interactions in the Outflow from Gamma-Ray Burst Accretion Disks

    Full text link
    We examine the composition of matter as it flows away from gamma ray burst accretion disks, in order to determine what sort of nucleosynthesis may occur. Since there is a large flux of neutrinos leaving the surface of the disk, the electron fraction of the outflowing material will change due to charged current neutrino interactions. We calculate the electron fraction in the wind using detailed neutrino fluxes from every point on the disk and study a range of trajectories and outflow conditions for several different accretion disk models. We find that low electron fractions, conducive to making r-process elements, only appear in outflows from disks with high accretion rates that have a significant region both of trapped neutrinos and antineutrinos. Disks with lower accretion rates that have only a significant region of trapped neutrinos can have outflows with very high electron fractions, whereas the lowest accretion rate disks with little trapping have outflow electrons fractions of closer to one half.Comment: 11 pages, 10 figure

    Understanding Supernova Neutrino Physics using Low-Energy Beta-Beams

    Full text link
    We show that fitting linear combinations of low-energy beta-beam spectra to supernova-neutrino energy-distributions reconstructs the response of a nuclear target to a supernova flux in a very accurate way. This allows one to make direct predictions about the supernova-neutrino signal in a terrestrial neutrino detector.Comment: To appear in the proceedings of International School of Nuclear Physics: 27th Course: "Neutrinos in Cosmology, in Astro, Particle and Nuclear Physics". Erice, Sicily, Italy, 16-2

    Reconstructing supernova-neutrino spectra using low-energy beta-beams

    Full text link
    Only weakly interacting, neutrinos are the principal messengers reaching us from the center of a supernova. Terrestrial neutrino telescopes, such as SNO and SuperKamiokande, can provide precious information about the processes in the core of a collapsing and exploding star. But the information about the supernova that a neutrino detector can supply, is restricted by the fact that little experimental data on the neutrino-nucleus cross sections exists and by the uncertainties in theoretical calculations. In this letter, we propose a novel procedure that determines the response of a target nucleus in a supernova-neutrino detector directly, by using low-energy beta-beams. We show that fitting 'synthetic' spectra, constructed by taking linear combinations of beta-beam spectra, to the original supernova-neutrino spectra reproduces the folded differential cross sections very accurately. Comparing the response in a terrestrial detector to these synthetic responses provides a direct way to determine the main parameters of the supernova-neutrino energy-distribution.Comment: 4 page

    Untangling supernova-neutrino oscillations with beta-beam data

    Get PDF
    Recently, we suggested that low-energy beta-beam neutrinos can be very useful for the study of supernova neutrino interactions. In this paper, we examine the use of a such experiment for the analysis of a supernova neutrino signal. Since supernova neutrinos are oscillating, it is very likely that the terrestrial spectrum of supernova neutrinos of a given flavor will not be the same as the energy distribution with which these neutrinos were first emitted. We demonstrate the efficacy of the proposed method for untangling multiple neutrino spectra. This is an essential feature of any model aiming at gaining information about the supernova mechanism, probing proto-neutron star physics, and understanding supernova nucleosynthesis, such as the neutrino process and the r-process. We also consider the efficacy of different experimental approaches including measurements at multiple beam energies and detector configurations.Comment: 13 pages, 11 figures, accepted for publication in Phys. Rev.

    Prospects for Detecting Supernova Neutrino Flavor Oscillations

    Get PDF
    The neutrinos from a Type II supernova provide perhaps our best opportunity to probe cosmologically interesting muon and/or tauon neutrino masses. This is because matter enhanced neutrino oscillations can lead to an anomalously hot nu_e spectrum, and thus to enhanced charged current cross sections in terrestrial detectors. Two recently proposed supernova neutrino observatories, OMNIS and LAND, will detect neutrons spalled from target nuclei by neutral and charged current neutrino interactions. As this signal is not flavor specific, it is not immediately clear whether a convincing neutrino oscillation signal can be extracted from such experiments. To address this issue we examine the responses of a series of possible light and heavy mass targets, 9Be, 23Na, 35Cl, and 208Pb. We find that strategies for detecting oscillations which use only neutron count rates are problematic at best, even if cross sections are determined by ancillary experiments. Plausible uncertainties in supernova neutrino spectra tend to obscure rate enhancements due to oscillations. However, in the case of 208Pb, a signal emerges that is largely flavor specific and extraordinarily sensitive to the nu_e temperature, the emission of two neutrons. This signal and its flavor specificity are associated with the strength and location of the first-forbidden responses for neutral and charge current reactions, aspects of the 208Pb neutrino cross section that have not been discussed previously. Hadronic spin transfer experiments might be helpful in confirming some of the nuclear structure physics underlying our conclusions.Comment: 27 pages, RevTeX, 2 figure
    • …
    corecore