122 research outputs found
Thallium-208: a beacon of in situ neutron capture nucleosynthesis
We demonstrate that the well-known 2.6 MeV gamma-ray emission line from
thallium-208 could serve as a real-time indicator of astrophysical heavy
element production, with both rapid (r) and intermediate (i) neutron capture
processes capable of its synthesis. We consider the r process in a Galactic
neutron star merger and show Tl-208 to be detectable from ~12 hours to ~10
days, and again ~1-20 years post-event. Detection of Tl-208 represents the only
identified prospect for a direct signal of lead production (implying gold
synthesis), arguing for the importance of future MeV telescope missions which
aim to detect Galactic events but may also be able to reach some nearby
galaxies in the Local Group.Comment: accepted to PR
Characterizing r-Process Sites through Actinide Production
© Published under licence by IOP Publishing Ltd. Of the variations in the elemental abundance patterns of stars enhanced with r-process elements, the variation in the relative actinide-To-lanthanide ratio is among the most significant. We investigate the source of these actinide differences in order to determine whether these variations are due to natural differences in astrophysical sites, or due to the uncertain nuclear properties that are accessed in r-process sites. We find that variations between relative stellar actinide abundances is most likely astrophysical in nature, owing to how neutron-rich the ejecta from an r-process event may be. Furthermore, if an r-process site is capable of generating variations in the neutron-richness of its ejected material, then only one type of r-process site is needed to explain all levels of observed relative actinide enhancements
The Case for Adaptive Neuromodulation to Treat Severe Intractable Mental Disorders
Mental disorders are a leading cause of disability worldwide, and available treatments have limited efficacy for severe cases unresponsive to conventional therapies. Neurosurgical interventions, such as lesioning procedures, have shown success in treating refractory cases of mental illness, but may have irreversible side effects. Neuromodulation therapies, specifically Deep Brain Stimulation (DBS), may offer similar therapeutic benefits using a reversible (explantable) and adjustable platform. Early DBS trials have been promising, however, pivotal clinical trials have failed to date. These failures may be attributed to targeting, patient selection, or the “open-loop” nature of DBS, where stimulation parameters are chosen ad hoc during infrequent visits to the clinician’s office that take place weeks to months apart. Further, the tonic continuous stimulation fails to address the dynamic nature of mental illness; symptoms often fluctuate over minutes to days. Additionally, stimulation-based interventions can cause undesirable effects if applied when not needed. A responsive, adaptive DBS (aDBS) system may improve efficacy by titrating stimulation parameters in response to neural signatures (i.e., biomarkers) related to symptoms and side effects. Here, we present rationale for the development of a responsive DBS system for treatment of refractory mental illness, detail a strategic approach for identification of electrophysiological and behavioral biomarkers of mental illness, and discuss opportunities for future technological developments that may harness aDBS to deliver improved therapy
Differential Roles of HOW in Male and Female Drosophila Germline Differentiation
The adult gonads in both male and female Drosophila melanogaster produce gametes that originate from a regenerative pool of germline stem cells (GSCs). The differentiation programme that produces gametes must be co-ordinated with GSC maintenance and proliferation in order to regulate tissue regeneration. The HOW RNA-binding protein has been shown to maintain mitotic progression of male GSCs and their daughters by maintenance of Cyclin B expression as well as suppressing accumulation of the differentiation factor Bam. Loss of HOW function in the male germline results in loss of GSCs due to a delay in G2 and subsequent apoptosis. Here we show that female how mutant GSCs do not have any cell cycle defects although HOW continues to bind bam mRNA and suppress Bam expression. The role of HOW in suppressing germ cell Bam expression appears to be conserved between sexes, leading to different cellular outcomes in how mutants due to the different functions of Bam. In addition the role in maintaining Cyclin B expression has not been conserved so female how GSCs differentiate rather than arrest
Fludarabine modulates composition and function of the T cell pool in patients with chronic lymphocytic leukaemia
The combination of cytotoxic treatment with strategies for immune activation represents an attractive strategy for tumour therapy. Following reduction of high tumour burden by effective cytotoxic agents, two major immune-stimulating approaches are being pursued. First, innate immunity can be activated by monoclonal antibodies triggering antibody-dependent cellular cytotoxicity. Second, tumour-specific T cell responses can be generated by immunization of patients with peptides derived from tumour antigens and infused in soluble form or loaded onto dendritic cells. The choice of cytotoxic agents for such combinatory regimens is crucial since most substances such as fludarabine are considered immunosuppressive while others such as cyclophosphamide can have immunostimulatory activity. We tested in this study whether fludarabine and/or cyclophosphamide, which represent a very effective treatment regimen for chronic lymphocytic leukaemia, would interfere with a therapeutic strategy of T cell activation. Analysis of peripheral blood samples from patients prior and during fludarabine/cyclophosphamide therapy revealed rapid and sustained reduction of tumour cells but also of CD4+ and CD8+ T cells. This correlated with a significant cytotoxic activity of fludarabine/cyclophosphamide on T cells in vitro. Unexpectedly, T cells surviving fludarabine/cyclophosphamide treatment in vitro had a more mature phenotype, while fludarabine-treated T cells were significantly more responsive to mitogenic stimulation than their untreated counterparts and showed a shift towards TH1 cytokine secretion. In conclusion, fludarabine/cyclophosphamide therapy though inducing significant and relevant T cell depletion seems to generate a micromilieu suitable for subsequent T cell activation
Direct Visualization by Cryo-EM of the Mycobacterial Capsular Layer: A Labile Structure Containing ESX-1-Secreted Proteins
The cell envelope of mycobacteria, a group of Gram positive bacteria, is composed of a plasma membrane and a Gram-negative-like outer membrane containing mycolic acids. In addition, the surface of the mycobacteria is coated with an ill-characterized layer of extractable, non-covalently linked glycans, lipids and proteins, collectively known as the capsule, whose occurrence is a matter of debate. By using plunge freezing cryo-electron microscopy technique, we were able to show that pathogenic mycobacteria produce a thick capsule, only present when the cells were grown under unperturbed conditions and easily removed by mild detergents. This detergent-labile capsule layer contains arabinomannan, α-glucan and oligomannosyl-capped glycolipids. Further immunogenic and proteomic analyses revealed that Mycobacterium marinum capsule contains high amounts of proteins that are secreted via the ESX-1 pathway. Finally, cell infection experiments demonstrated the importance of the capsule for binding to cells and dampening of pro-inflammatory cytokine response. Together, these results show a direct visualization of the mycobacterial capsular layer as a labile structure that contains ESX-1-secreted proteins
- …