570 research outputs found

    Elevated interferon-stimulated gene transcription in peripheral blood mononuclear cells occurs in patients infected with genotype 1 but not genotype 3 hepatitis C virus

    Get PDF
    Hepatitis C virus (HCV) can be classified into seven distinct genotypes that are associated with differing pathologies and respond differently to antiviral therapy. In the UK, genotype 1 and 3 are present in approximately equal proportions. Chronic infection with HCV genotype 3 is associated with increased liver steatosis and reduced peripheral total cholesterol levels, which potentially influences peripheral immune responses. To understand these differences, we investigated host gene transcription in peripheral blood mononuclear cells by microarray and quantitative PCR in patients with genotype 1 (n = 22) or genotype 3 infection (n = 22) and matched healthy controls (n = 15). Enrichment of genes involved in immune response and inflammatory pathways were present in patients infected with HCV genotype 1; however, no differences in genes involved in lipid or cholesterol metabolism were detected. This genotype-specific induction of genes is unrelated to IL28B genotype or previous treatment failure. Our data support the hypothesis that genotype 1 infection drives a skewed Type I interferon response and provides a foundation for future investigations into the host–pathogen interactions that underlie the genotype-specific clinical outcomes of chronic HCV infection

    Non cell autonomous upregulation of CDKN2 transcription linked to progression of chronic hepatitis C disease

    Get PDF
    Chronic hepatitis C virus infection (C-HC) is associated with higher mortality arising from hepatic and extrahepatic disease. This may be due to accelerated biological aging; however, studies in C-HC have thus far been based solely on telomere length as a biomarker of aging (BoA). In this study, we have evaluated CDKN2 locus transcripts as alternative BoAs in C-HC. Our results suggest that C-HC induces non-cell-autonomous senescence and accelerates biological aging. The CDKN2 locus may provide a link between C-HC and increased susceptibility to age-associated diseases and provides novel biomarkers for assessing its impact on aging processes in man

    Broad anti-hepatitis C virus (HCV) antibody responses are associated with improved clinical disease parameters in chronic HCV infection

    Get PDF
    During hepatitis C virus (HCV) infection broadly neutralizing antibody (bNAb) responses targeting E1E2 envelope glycoproteins are generated in many individuals. It is unclear if these antibodies play a protective or a pathogenic role during chronic infection. In this study, we investigated whether bNAb responses in individuals with chronic infection were associated with differences in clinical presentation. Patient-derived purified serum IgG was used to assess the breadth of HCV E1E2 binding and neutralization activity of HCV pseudoparticles. Two panels were compared, bearing viral envelope proteins representing either an inter-genotype or an intra-genotype (gt) 1 group. We found that HCV viral load was negatively associated with strong cross-genotypic E1E2 binding (P=0.03). Overall we observed only modest correlation between total E1E2 binding and neutralizing ability. The breadth of inter-genotype neutralization did not correlate with any clinical parameters, however, analysis of individuals with gt 1 HCV infection (n=20), using an intra-genotype pseudoparticle panel, found a strong association between neutralization breadth and reduced liver fibrosis (P=0.006). Broad bNAb response in our chronic cohort was associated with a single nucleotide polymorphism (SNP) in the HLA-DQB1 gene (P=0.038) as previously reported in an acute cohort. Furthermore bNAbs in these individuals targeted more than one region of E2 neutralizing epitopes as assessed through cross-competition of patient bNAbs with well-characterized E2 antibodies. We conclude that bNAb responses in chronic gt1 infection are associated with lower rates of fibrosis and host genetics may play a role in the ability to raise such responses. IMPORTANCE: Globally there are 130-150 million people with chronic HCV infection. Typically the disease is progressive and is a major cause of severe liver cirrhosis and hepatocellular carcinoma. While it is known that neutralizing antibodies have a role in spontaneous clearance during acute infection, little is known about their role in chronic infection. In the present work we investigate the antibody response in a cohort of chronically infected individuals and find that a broad neutralizing antibody response is protective, with reduced levels of liver fibrosis and cirrhosis. We also find an association with SNPs in class II HLA genes and the presence of a broad neutralizing response indicating that antigen presentation may be important for production of HCV neutralizing antibodies

    Bidirectional lipid droplet velocities are controlled by differential binding strengths of HCV Core DII protein

    Get PDF
    Host cell lipid droplets (LD) are essential in the hepatitis C virus (HCV) life cycle and are targeted by the viral capsid core protein. Core-coated LDs accumulate in the perinuclear region and facilitate viral particle assembly, but it is unclear how mobility of these LDs is directed by core. Herein we used two-photon fluorescence, differential interference contrast imaging, and coherent anti-Stokes Raman scattering microscopies, to reveal novel core-mediated changes to LD dynamics. Expression of core protein’s lipid binding domain II (DII-core) induced slower LD speeds, but did not affect directionality of movement on microtubules. Modulating the LD binding strength of DII-core further impacted LD mobility, revealing the temporal effects of LD-bound DII-core. These results for DII-core coated LDs support a model for core-mediated LD localization that involves core slowing down the rate of movement of LDs until localization at the perinuclear region is accomplished where LD movement ceases. The guided localization of LDs by HCV core protein not only is essential to the viral life cycle but also poses an interesting target for the development of antiviral strategies against HCV

    Viral genotype correlates with distinct liver gene transcription signatures in chronic hepatitis C virus infection

    Get PDF
    BACKGROUND: Chronic hepatitis C virus (HCV) infection of the liver with either genotype 1 or genotype 3 gives rise to distinct pathologies, and the two viral genotypes respond differently to antiviral therapy. METHODS: To understand these clinical differences, we compared gene transcription profiles in liver biopsies from patients infected with either gt1 or gt3, and uninfected controls. RESULTS: Gt1-infected biopsies displayed elevated levels of transcripts regulated by type I and type III interferons (IFN), including genes that predict response to IFN-α therapy. In contrast, genes controlled by IFN-γ were induced in gt3-infected biopsies. Moreover, IFN-γ levels were higher in gt3-infected biopsies. Analysis of hepatocyte-derived cell lines confirmed that the genes upregulated in gt3 infection were preferentially induced by IFN-γ. The transcriptional profile of gt3 infection was unaffected by IFNL4 polymorphisms, providing a rationale for the reduced predictive power of IFNL genotyping in gt3-infected patients. CONCLUSIONS: The interactions between HCV genotypes 1 and 3 and hepatocytes are distinct. These unique interactions provide avenues to explore the biological mechanisms that drive viral genotype-specific differences in disease progression and treatment response. A greater understanding of the distinct host-pathogen interactions of the different HCV genotypes is required to facilitate optimal management of HCV infection

    Genome-to-genome analysis highlights the effect of the human innate and adaptive immune systems on the hepatitis C virus

    Get PDF
    Outcomes of hepatitis C virus (HCV) infection and treatment depend on viral and host genetic factors. Here we use human genome-wide genotyping arrays and new whole-genome HCV viral sequencing technologies to perform a systematic genome-to-genome study of 542 individuals who were chronically infected with HCV, predominantly genotype 3. We show that both alleles of genes encoding human leukocyte antigen molecules and genes encoding components of the interferon lambda innate immune system drive viral polymorphism. Additionally, we show that IFNL4 genotypes determine HCV viral load through a mechanism dependent on a specific amino acid residue in the HCV NS5A protein. These findings highlight the interplay between the innate immune system and the viral genome in HCV control

    Requirement of cellular DDX3 for hepatitis C virus replication is unrelated to its interaction with the viral core protein

    Get PDF
    The cellular DEAD-box protein DDX3 was recently shown to be essential for hepatitis C virus (HCV) replication. Prior to that, we had reported that HCV core binds to DDX3 in yeast-two hybrid and transient transfection assays. Here, we confirm by co-immunoprecipitation that this interaction occurs in cells replicating the JFH1 virus. Consistent with this result, immunofluorescence staining of infected cells revealed a dramatic redistribution of cytoplasmic DDX3 by core protein to the virus assembly sites around lipid droplets. Given this close association of DDX3 with core and lipid droplets, and its involvement in virus replication, we investigated the importance of this host factor in the virus life cycle. Mutagenesis studies located a single amino acid in the N-terminal domain of JFH1 core that when changed to alanine significantly abrogated this interaction. Surprisingly, this mutation did not alter infectious virus production and RNA replication, indicating that the core–DDX3 interaction is dispensable in the HCV life cycle. Consistent with previous studies, siRNA-led knockdown of DDX3 lowered virus production and RNA replication levels of both WT JFH1 and the mutant virus unable to bind DDX3. Thus, our study shows for the first time that the requirement of DDX3 for HCV replication is unrelated to its interaction with the viral core protein
    corecore