436 research outputs found

    A Candidate Young Massive Planet in Orbit around the Classical T Tauri Star CI Tau

    Get PDF
    The ~2 Myr old classical T Tauri star CI Tau shows periodic variability in its radial velocity (RV) variations measured at infrared (IR) and optical wavelengths. We find that these observations are consistent with a massive planet in a ~9-day period orbit. These results are based on 71 IR RV measurements of this system obtained over 5 years, and on 26 optical RV measurements obtained over 9 years. CI Tau was also observed photometrically in the optical on 34 nights over ~one month in 2012. The optical RV data alone are inadequate to identify an orbital period, likely the result of star spot and activity induced noise for this relatively small dataset. The infrared RV measurements reveal significant periodicity at ~9 days. In addition, the full set of optical and IR RV measurements taken together phase coherently and with equal amplitudes to the ~9 day period. Periodic radial velocity signals can in principle be produced by cool spots, hot spots, and reflection of the stellar spectrum off the inner disk, in addition to resulting from a planetary companion. We have considered each of these and find the planet hypothesis most consistent with the data. The radial velocity amplitude yields an Msin(i) of ~8.1 M_Jup; in conjunction with a 1.3 mm continuum emission measurement of the circumstellar disk inclination from the literature, we find a planet mass of ~11.3 M_Jup, assuming alignment of the planetary orbit with the disk.Comment: 61 pages, 13 figures, accepted for publication in The Astrophysical Journa

    Deuteron photo-disintegration with polarised photons in the energy range 30 - 50 MeV

    Full text link
    The reaction d(\vec\gamma,np) has been studied using the tagged and polarised LADON gamma ray beam at an energy 30 - 50 MeV to investigate the existence of narrow dibaryonic resonances recently suggested from the experimental measurements in a different laboratory. The beam was obtained by Compton back-scattering of laser light on the electrons of the storage ring ADONE. Photo-neutron yields were measured at five neutron angle \vartheta_n = 22, 55.5, 90, 125 and 157 degrees in the center of mass system.Our results do not support the existence of such resonances.Comment: 16 pages, Latex, 22 figures, 1 table. Nucl. Phys. A to appea

    Follow-Up Observations of PTFO 8-8695: A 3 MYr Old T-Tauri Star Hosting a Jupiter-mass Planetary Candidate

    Get PDF
    We present Spitzer 4.5\micron\ light curve observations, Keck NIRSPEC radial velocity observations, and LCOGT optical light curve observations of PTFO~8-8695, which may host a Jupiter-sized planet in a very short orbital period (0.45 days). Previous work by \citet{vaneyken12} and \citet{barnes13} predicts that the stellar rotation axis and the planetary orbital plane should precess with a period of 300−600300 - 600 days. As a consequence, the observed transits should change shape and depth, disappear, and reappear with the precession. Our observations indicate the long-term presence of the transit events (>3>3 years), and that the transits indeed do change depth, disappear and reappear. The Spitzer observations and the NIRSPEC radial velocity observations (with contemporaneous LCOGT optical light curve data) are consistent with the predicted transit times and depths for the $M_\star = 0.34\ M_\odot$ precession model and demonstrate the disappearance of the transits. An LCOGT optical light curve shows that the transits do reappear approximately 1 year later. The observed transits occur at the times predicted by a straight-forward propagation of the transit ephemeris. The precession model correctly predicts the depth and time of the Spitzer transit and the lack of a transit at the time of the NIRSPEC radial velocity observations. However, the precession model predicts the return of the transits approximately 1 month later than observed by LCOGT. Overall, the data are suggestive that the planetary interpretation of the observed transit events may indeed be correct, but the precession model and data are currently insufficient to confirm firmly the planetary status of PTFO~8-8695b.Comment: Accepted for publication in The Astrophysical Journa

    Reactive ion etching of Ta–Si–N diffusion barriers in CF_(4)+O_(2)

    Get PDF
    Ta_(36)Si_(14)N_(50) amorphous layers were reactive ion etched in CF_(4)+O_(2) plasmas. The etch depth was determined as a function of gas composition, pressure, and cathode power. Adding small amounts of O_2 to CF_4 increased the etch rates up to approximately 15% O_2 concentration, with etch rates then decreasing with further addition of O_2. Etch rates increased with both pressure and power. Etching proceeded only after an initial delay time which depended upon gas composition and power. The delay is probably caused by a surface native oxide which must be removed before etching can commence. The presence of a surface oxide was observed from Auger electron spectroscopy intensity depth profile measurements and is estimated to be 2 nm thick. Under optimal conditions, the etch rate of Ta_(36)Si_(14)N_(50) is about seven times higher than for SiO_2, thus providing a high degree of selectivity for integrated circuit processing

    Optical-Model Description of Time-Reversal Violation

    Full text link
    A time-reversal-violating spin-correlation coefficient in the total cross section for polarized neutrons incident on a tensor rank-2 polarized target is calculated by assuming a time-reversal-noninvariant, parity-conserving ``five-fold" interaction in the neutron-nucleus optical potential. Results are presented for the system n+165Hon + {^{165}{\rm Ho}} for neutron incident energies covering the range 1--20 MeV. From existing experimental bounds, a strength of 2±102 \pm 10 keV is deduced for the real and imaginary parts of the five-fold term, which implies an upper bound of order 10−410^{-4} on the relative TT-odd strength when compared to the central real optical potential.Comment: 11 pages (Revtex

    Epidemics on contact networks: a general stochastic approach

    Full text link
    Dynamics on networks is considered from the perspective of Markov stochastic processes. We partially describe the state of the system through network motifs and infer any missing data using the available information. This versatile approach is especially well adapted for modelling spreading processes and/or population dynamics. In particular, the generality of our systematic framework and the fact that its assumptions are explicitly stated suggests that it could be used as a common ground for comparing existing epidemics models too complex for direct comparison, such as agent-based computer simulations. We provide many examples for the special cases of susceptible-infectious-susceptible (SIS) and susceptible-infectious-removed (SIR) dynamics (e.g., epidemics propagation) and we observe multiple situations where accurate results may be obtained at low computational cost. Our perspective reveals a subtle balance between the complex requirements of a realistic model and its basic assumptions.Comment: Main document: 16 pages, 7 figures. Electronic Supplementary Material (included): 6 pages, 1 tabl

    The angular distribution of the reaction νˉe+p→e++n\bar{\nu}_e + p \to e^+ + n

    Get PDF
    The reaction νˉe+p→e++n\bar{\nu}_e + p \to e^+ + n is very important for low-energy (Eν≲60E_\nu \lesssim 60 MeV) antineutrino experiments. In this paper we calculate the positron angular distribution, which at low energies is slightly backward. We show that weak magnetism and recoil corrections have a large effect on the angular distribution, making it isotropic at about 15 MeV and slightly forward at higher energies. We also show that the behavior of the cross section and the angular distribution can be well-understood analytically for Eν≲60E_\nu \lesssim 60 MeV by calculating to O(1/M){\cal O}(1/M), where MM is the nucleon mass. The correct angular distribution is useful for separating νˉe+p→e++n\bar{\nu}_e + p \to e^+ + n events from other reactions and detector backgrounds, as well as for possible localization of the source (e.g., a supernova) direction. We comment on how similar corrections appear for the lepton angular distributions in the deuteron breakup reactions νˉe+d→e++n+n\bar{\nu}_e + d \to e^+ + n + n and νe+d→e−+p+p\nu_e + d \to e^- + p + p. Finally, in the reaction νˉe+p→e++n\bar{\nu}_e + p \to e^+ + n, the angular distribution of the outgoing neutrons is strongly forward-peaked, leading to a measurable separation in positron and neutron detection points, also potentially useful for rejecting backgrounds or locating the source direction.Comment: 10 pages, including 5 figure

    Can sacrificial feeding areas protect aquatic plants from herbivore grazing? Using behavioural ecology to inform wildlife management

    Get PDF
    Effective wildlife management is needed for conservation, economic and human well-being objectives. However, traditional population control methods are frequently ineffective, unpopular with stakeholders, may affect non-target species, and can be both expensive and impractical to implement. New methods which address these issues and offer effective wildlife management are required. We used an individual-based model to predict the efficacy of a sacrificial feeding area in preventing grazing damage by mute swans (Cygnus olor) to adjacent river vegetation of high conservation and economic value. The accuracy of model predictions was assessed by a comparison with observed field data, whilst prediction robustness was evaluated using a sensitivity analysis. We used repeated simulations to evaluate how the efficacy of the sacrificial feeding area was regulated by (i) food quantity, (ii) food quality, and (iii) the functional response of the forager. Our model gave accurate predictions of aquatic plant biomass, carrying capacity, swan mortality, swan foraging effort, and river use. Our model predicted that increased sacrificial feeding area food quantity and quality would prevent the depletion of aquatic plant biomass by swans. When the functional response for vegetation in the sacrificial feeding area was increased, the food quantity and quality in the sacrificial feeding area required to protect adjacent aquatic plants were reduced. Our study demonstrates how the insights of behavioural ecology can be used to inform wildlife management. The principles that underpin our model predictions are likely to be valid across a range of different resource-consumer interactions, emphasising the generality of our approach to the evaluation of strategies for resolving wildlife management problems

    Gemini Near Infrared Spectrograph -- Distant Quasar Survey: Augmented Spectroscopic Catalog and a Prescription for Correcting UV-Based Quasar Redshifts

    Full text link
    Quasars at z ≳ 1z~{\gtrsim}~1 most often have redshifts measured from rest-frame ultraviolet emission lines. One of the most common such lines, C IV λ1549{\lambda}1549, shows blueshifts up to ≈ 5000 km s−1{\approx}~5000~\rm{km~s^{-1}}, and in rare cases even higher. This blueshifting results in highly uncertain redshifts when compared to redshift determinations from rest-frame optical emission lines, e.g., from the narrow [O III] λ5007{\lambda}5007 feature. We present spectroscopic measurements for 260 sources at 1.55 ≲ z ≲ 3.501.55~{\lesssim}~z~{\lesssim}~3.50 having −28.0 ≲ Mi ≲ −30.0-28.0~{\lesssim}~M_i~{\lesssim}~-30.0 mag from the Gemini Near Infrared Spectrograph - Distant Quasar Survey (GNIRS-DQS) catalog, augmenting the previous iteration which contained 226 of the 260 sources whose measurements are improved upon in this work. We obtain reliable systemic redshifts based on [O III] λ5007{\lambda}5007 for a subset of 121 sources which we use to calibrate prescriptions for correcting UV-based redshifts. These prescriptions are based on a regression analysis involving C IV full-width-at-half-maximum intensity and equivalent width, along with the UV continuum luminosity at a rest-frame wavelength of 1350 A. Applying these corrections can improve the accuracy and the precision in the C IV-based redshift by up to ∼ 850 km s−1{\sim}~850~\rm{km~s^{-1}} and ∼ 150 km s−1{\sim}~150~\rm{km~s^{-1}}, respectively, which correspond to ∼ 8.5{\sim}~8.5 Mpc and ∼ 1.5{\sim}~1.5 Mpc in comoving distance at z = 2.5z~=~2.5. Our prescriptions also improve the accuracy of the best available multi-feature redshift determination algorithm by ∼ 100 km s−1{\sim}~100~\rm{km~s^{-1}}, indicating that the spectroscopic properties of the C IV emission line can provide robust redshift estimates for high-redshift quasars. We discuss the prospects of our prescriptions for cosmological and quasar studies utilizing upcoming large spectroscopic surveys.Comment: 20 pages (AASTeX 6.3.1), 8 figures, accepted for publication in Ap
    • …
    corecore