178 research outputs found

    Circular dichroism in photoelectron angular distributions from two‐color (1+1) REMPI of NO

    Get PDF
    A detailed experimental and theoretical study of dichroic effects in photoelectron angular distributions is reported for (1+1), two‐color REMPI of NO via the A^ 2Σ^+, v=0 state. Optically aligned A state rotational levels are probed through ionization by circularly polarized light. Resultant photoelectron angular distributions exhibit significant left–right asymmetry, the phase and magnitude of which are shown to be related to the curvature of the excited state M_J distribution. Theoretical calculations involving a full ab initio treatment of the ionization dynamics result in circularly dichroic angular distribution (CDAD) parameters in good agreement with those derived experimentally. Additional effects including hyperfine depolarization and coherence are also discussed in relation to the observed CDAD data

    Zero kinetic energy-pulsed field ionization and resonance enhanced multiphoton ionization photoelectron spectroscopy: Ionization dynamics of Rydberg states in HBr

    Get PDF
    The results of rotationally resolved resonance enhanced multiphoton ionization photoelectron spectroscopy and zero kinetic energy‐pulsed field ionization studies on HBr via various rotational levels of the F^ 1Δ_2 and f^ 3Δ_2 Rydberg states are reported. These studies lead to an accurate determination of the lowest ionization threshold as 94 098.9±1 cm^(−1). Observed rotational and spin–orbit branching ratios are compared to the results of ab initio calculations. The differences between theory and experiment highlight the dominant role of rotational and spin–orbit interactions for the dynamic properties of the high‐n Rydberg states involved in the pulsed field ionization process

    Photoelectron spectroscopy of excited molecular states

    Get PDF
    Results of studies of ion rotational and vibrational distributions for resonance enhanced multiphoton ionization are discussed

    Rotationally resolved photoelectron spectra in resonance enhanced multiphoton ionization of Rydberg states of NH

    Get PDF
    Results of combined theoretical and experimental studies of photoelectron spectra resulting from (2+1) resonance enhanced multiphoton ionization (REMPI) via the f ^1Π(3pσ), g ^1Δ(3pπ), and h ^1ÎŁ^+(3pπ) Rydberg states of NH are reported. The overall agreement between these calculated and measured spectra is encouraging. Strong ΔN=N+−N’=even peaks, particularly for ΔN=0, are observed in these spectra. Low‐energy Cooper minima are predicted to occur in the l=2 wave of the kπ(^1ÎŁ^+), kπ(^1ÎŁ^−), and kπ(^1Δ) photoelectron channels for the f state, the kπ(^1Δ), kÎŽ(^1Π), and kÎŽ(^1Ί) channels for the g state, and the kπ(^1ÎŁ^+) and kÎŽ(^1Π) channels for the h state of NH. Depletion of the d wave (l=2) contributions to the photoelectron matrix element in the vicinity of these Cooper minima subsequently enhances the relative importance of the odd l  waves. The observed ΔN transitions are also affected by strong l  mixing in the electronic continuum induced by the nonspherical molecular potential. Interference of continuum waves between degenerate ionization channels also determines the spectral pattern observed for photoionization of the f ^1Π state of NH. Photoelectron angular distributions and the angular momentum compositions of photoelectron matrix elements provide further insight into the origin of these Cooper minima

    Breakdown of the Two-Step Model in K-Shell Photoemission and Subsequent Decay Probed by the Molecular-Frame Photoelectron Angular Distributions of CO_2

    Get PDF
    We report results of measurements and of Hartree-Fock level calculations of molecular-frame photoelectron angular distributions (MFPADs) for C 1s photoemission from CO2. The agreement between the measured and calculated MFPADs is on average reasonable. The measured MFPADs display a weak but definite asymmetry with respect to the O+ and CO+ fragment ions at certain energies, providing evidence for an overlap of gerade and ungerade final ionic states giving rise to a partial breakdown of the two-step model of core-level photoionization and its subsequent Auger decay
    • 

    corecore