80 research outputs found

    Theory of quantum frequency translation of light in optical fiber: application to interference of two photons of different color

    Full text link
    We study quantum frequency translation and two-color photon interference enabled by the Bragg scattering four-wave mixing process in optical fiber. Using realistic model parameters, we computationally and analytically determine the Green function and Schmidt modes for cases with various pump-pulse lengths. These cases can be categorized as either "non-discriminatory" or "discriminatory" in regards to their propensity to exhibit high-efficiency translation or high-visibility two-photon interference for many different shapes of input wave packets or for only a few input wave packets, respectively. Also, for a particular case, the Schmidt mode set was found to be nearly equal to a Hermite-Gaussian function set. The methods and results also apply with little modification to frequency conversion by sum-frequency conversion in optical crystals

    Oblique stimulated Raman scattering of a short laser pulse in a plasma channel

    Get PDF
    The spatiotemporal evolution of parametric instabilities such as stimulated Raman scattering is studied analytically in time and two spatial dimensions. Initial and boundary conditions are chosen to represent the entrance, propagation, and exit of a laser pulse of finite extent as it progresses through a homogeneous collisional plasma channel. For most scattering angles daughter wave growth is enhanced by lateral reflections within the channel. At late times the two-dimensional interaction approaches a one-dimensional damped mode in which the dissipative loss from lateral transmission of the Stokes wave through the channel boundaries is equivalent to an overall damping of the Stokes amplitudes within the channel

    Propagation of a short laser pulse in a plasma

    Get PDF
    The propagation of an electromagnetic pulse in a plasma is studied for pulse durations that are comparable to the plasma period. When the carrier frequency of the incident pulse is much higher than the plasma frequency, the pulse propagates without distortion at its group speed. When the carrier frequency is comparable to the plasma frequency, the pulse is distorted and leaves behind it an electromagnetic wake.Comment: 6 pages, 5 figures, REVTeX. To be published in Physical Review E, vol. 56, December 1, 199

    Quantum Frequency Translation of Single-Photon States in Photonic Crystal Fiber

    Full text link
    We experimentally demonstrate frequency translation of a nonclassical optical field via the Bragg scattering four-wave mixing process in a photonic crystal fiber (PCF). The high nonlinearity and the ability to control dispersion in PCF enable efficient translation between photon channels within the visible to-near-infrared spectral range, useful in quantum networks. Heralded single photons at 683 nm were translated to 659 nm with an efficiency of 28.6±2.228.6 \pm 2.2 percent. Second-order correlation measurements on the 683-nm and 659-nm fields yielded g683(2)(0)=0.21±0.02g^{(2)}_{683}(0) = 0.21 \pm 0.02 and g659(2)(0)=0.19±0.05g^{(2)}_{659}(0) = 0.19 \pm 0.05 respectively, showing the nonclassical nature of both fields.Comment: 5 pages, 3 figure
    • …
    corecore