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Full and semi-analytic analyses of
two-pump parametric amplification with

pump depletion
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Abstract: This paper solves the four coupled equations describing
non-degenerate four-wave mixing, with the focus on amplifying a signal
in a fiber optical parametric amplifier (FOPA). Based on the full analytic
solution, a simple approximate solution describing the gain is developed.
The advantage of this new approximation is that it includes the depletion
of the pumps, which is lacking in the usual quasi-linearized approximation.
With the proposed model it is thus simple to predict the gain of a FOPA,
which we demonstrate with a highly nonlinear fiber to show that an
undepleted FOPA can produce a flat gain spectrum with a bandwidth in the
100-nm range, centered on the zero-dispersion wavelength. When running
the FOPA in depletion, this range can be slightly increased.

© 2011 Optical Society of America
OCIS codes: (060.2320) Fiber optics amplifiers and oscillators; (060.2330) Fiber optics com-
munications; (190.4370) Nonlinear optics, fibers.
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1. Introduction

Lately, fiber-optical parametric amplifiers (FOPAs) have attracted significant attention. There
are several reasons for this, including their ability to provide phase-sensitive amplification [1–
3], multicasting [4], regeneration [3, 5–7] and wavelength conversion [8, 9]. It is noted that
especially when applying the FOPA as an amplifier or regenerator, most emphasis has been on
single-pumped amplifiers. However research on phase-sensitive amplification is often based on
dual-pumped amplifiers [3, 10].

In wavelength conversion as well as in regeneration, amplifier saturation is of particular
importance. Consequently, it is essential to understand and to be able to predict the depletion
behavior of FOPA’s. Until now, the focus has been on single-pumped FOPAs. However, in this
work we consider depletion in dual-pumped FOPAs.

Previously Kylemark et al. [11] derived an approximation for a single-pumped FOPA oper-
ated at the specific phase mismatch which allows for total conversion of power from the pump.
Their approach is based on selecting a specific phase matching condition where the coupling of
power is only directed from the pump to the signal. Other phase matching conditions result in
periodic coupling of the power between pump and signal, and are not treated. In this work we
adopt a similar approach, though for a dual-pumped FOPA. In addition, we extend the approach
to any phase mismatch by neglecting the periodic behavior of the power flow. Depletion and the
periodic behavior of the flow of power have previously been described analytically by the use of
Jacobi elliptic functions [12–14]. In this work we derive a simpler analytical model of saturated
dual-pumped FOPA. This model provides a useful tool to understand and design a two-pump
FOPA operated in saturation, as for example when designing a wideband regenerator based
on operating the amplifier in depletion. The application of the model presented in this work is
discussed with a focus on optimizing the bandwidth of a two-pump parametric amplifier. By
locating the pumps symmetrically around the zero-dispersion wavelength (ZDW), a bandwidth
in the 100-nm range is achievable.
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2. Theory

In general we consider an electric field consisting of four continuous waves (CWs), at fre-
quencies ω1 through ω4. In non-denegerate four-wave mixing (FWM), the four distinct waves
interact with each other under the condition ω1 +ω4 = ω2 +ω3. Two of these, numbers 2 and
3, are in this paper used as pumps, while 1 is a signal, also denoted s, that is to be amplified,
and 4 is the idler, i, that arises when the signal is amplified. Under the assumption that the four
waves are sufficiently separated in frequency, the nonlinear Schrödinger equation (NLS) can be
reduced to four coupled differential equations for the complex field amplitudes [15]:

dA1

dz
= iβ1A1 + iγ

{[|A1|2 +2
(|A2|2 + |A3|2 + |A4|2

)]
A1 +2A2A3A∗

4

}
, (1a)

dA2

dz
= iβ2A2 + iγ

{[|A2|2 +2
(|A1|2 + |A3|2 + |A4|2

)]
A2 +2A1A∗

3A4
}
, (1b)

dA3

dz
= iβ3A3 + iγ

{[|A3|2 +2
(|A1|2 + |A2|2 + |A4|2

)]
A3 +2A1A∗

2A4
}
, (1c)

dA4

dz
= iβ4A4 + iγ

{[|A4|2 +2
(|A1|2 + |A2|2 + |A3|2

)]
A4 +2A∗

1A2A3
}
, (1d)

where γ is the nonlinear strength, βα is the wave-number and the index α may be either 1, 2,
3 or 4. It is assumed that the input fields are parallel polarized, but in the case of perpendicular
pumps and sidebands, the factor of 2 in the coupling term should be changed to a 1 [16, 17].
The most common method of solving Eq. (1) is by assuming that the pump powers remain
much greater than the signal and idler power at all times and that the power loss of the pumps is
negligible [1]. This will quasi-linearize the differential equations and for pumps with identical
power, Pp, result in

Ps(z) = Ps(0)

{

1+

[
2γPp

g
sinh(gz)

]2
}

, (2)

Pi(z) = Ps(0)

[
2γPp

g
sinh(gz)

]2

, (3)

where g2 = (2γPp)
2 − (κ/2)2 and κ = 2γPp +Δβ . Δβ is the wave-number mismatch given

as Δβ = β1 − β2 − β3 + β4, and since Pp is the pump power in each pump and these are as-
sumed identical, the expression resembles the expression known from single-pumped paramet-
ric amplifiers [1]. Generally, gain exists when −6γPp < Δβ < 2γPp, but the greatest gain,
G(z) = Ps(z)/Ps(0), is obtained with κ = 0, thus requiring that Δβ =−2γPp. This condition ef-
fectively means that the self- and cross-phase-modulation and dispersion induced wave-number
shifts cancel each other. However as the pumps are depleted, the effective wave-number mis-
match, κ , will change and thus decrease the coupling efficiency. The problem with this solution
is that it does not account for pump depletion and nonlinear detuning.

By rewriting the complex amplitude A in Eq. (1) in terms of the real variables, power P and
phase φ , as Aα =

√
Pα exp iφα , the differential equations are instead written as

dPα
dz

= sα4γ
√

∏
β

Pβ sinθ , (4)

dφα
dz

= βα + γ(2∑
β

Pβ −Pα)+2γ
√

∏β Pβ

Pα
cosθ , (5)

where θ = φ1 +φ4 −φ2 −φ3 and sα = dθ/dφα . It is seen that only the relative phase, θ , and
not the individual phases, is important. Thus, the phase equations can be reduced to one single
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differential equation. As seen from Eq. (4), this relative phase is important as it shows in which
direction the power flows. If the relative phase is positive, the power is transferred from the
pumps to the signal and idler, whereas if it is negative, the opposite happens. As power is
transferred from the pumps to the signal and idler, nonlinear detuning occurs, which reduces
the coupling. At some point the relative phase can be changed so much that the power flow is
reversed and the power begins to couple back to the pumps.

Because the parametric process is symmetric, the signal and the idler have the same increase
in power (photon flux), whereas the pumps have the same decrease, also written as dz(Ps−Pi) =
0 and dz(P2 −P3) = 0. Finally, the process is power conserving, so ∑α Pα(z) = Ptotal . Because
of these facts, all the powers are related to each other, and can thus be described by only one
variable according to the Manley-Rowe relations [18, 19]. This variable, F , is chosen to be the
power of the idler which is assumed zero at z = 0, i.e.

P1 = Ps +F, (6a)

P2 = P3 = Pp −F, (6b)

P4 = F, (6c)

where Ps is the input power of the signal, and Pp is the input power for each of the two pumps.
These relations reflect the facts that pump photons are destroyed in pairs and sideband photons
are created in pairs, or vice versa. With this change of notation, the gain of the signal is found
to be

G(z) =
Ps(z)
Ps(0)

= 1+
F(z)
Ps

. (7)

From Eq. (6), two governing differential equations can be set up for the power, F , and phase, θ .
Specifically,

dF
dz

=4γ(Pp −F)
√

F(Ps +F)sinθ , (8)

dθ
dz

=2γ

[

(Pp −F)

(√
F

Ps +F
+

√
Ps +F

F

)

−2
√

F(Ps +F)

]

cosθ

+ γδ −4γF, (9)

where

δ =
Δβ
γ

+2Pp −Ps. (10)

This effective phase mismatch also includes the signal power, which in the quasi-linearized case
is omitted due to the assumptions made. The two differential equations have the Hamiltonian

H = 4γ(Pp −F)
√

F(Ps +F)cosθ + γ (δ −2F)F. (11)

This was found by using a qualified guess and knowing it has to fulfill Hamilton’s equations

dF
dz

=−∂H
∂θ

,
dθ
dz

=
∂H
∂F

. (12)

The first term on the RHS of Eq. (11) is due to FWM, while the second contains the linear and
nonlinear phase-modulation terms. Because the Hamiltonian is independent of z, it is constant.
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It is therefore used to reduce the problem to one variable. Since F is initially zero, the value of
the Hamiltonian is also zero. Thus, the phase, θ , can be determined as

cosθ =
−(δ −2F)F

4(Pp −F)
√

F(Ps +F)
. (13)

From Eq. (8) a potential equation may be obtained for F , by squaring the equation and inserting
the expression for θ , resulting in

(
dF
dz

)2

= γ2
[
16(Pp −F)2F(Ps +F)− (δ −2F)2 F2

]
. (14)

For any given value of the wave-number mismatch, this can be written as

(
dF
dz

)2

=12γ2F( f1 −F)( f2 −F)(F − f3), (15)

where f j, j ∈ (1,2,3), are the roots of the polynomial and f1 ≥ f2 > F(0)> f3. The ordering of
these roots is important because it affects the structure of the solution. The solution for F will
be bounded by the roots of the potential equation. The lower boundary is zero, and the upper
boundary is the root f2. The value of this root will thus be the maximal value of the power
added to both the signal and the idler. The potential equation can be solved using Jacobi elliptic
functions [20]. The solution is

F(z) =
f3 f2sn2

[
γz
√

3 f1( f2 − f3),m
]

− f2 + f3 + f2sn2
[
γz
√

3 f1( f2 − f3),m
] , (16)

where sn is an elliptic function and the squared modulus

m2 =
f2( f1 − f3)
f1( f2 − f3)

. (17)

It is possible to achieve complete power conversion from the pumps to the signal and idler.
In this case the power of the idler equals the initial power of the pumps, thus F = Pp. When
inserted into the Hamiltonian, knowing that the value of the Hamiltonian is zero, one sees that
complete power conversion requires that δ = 2Pp, giving a wave-number mismatch of

Δβ = γPs. (18)

This differs significantly from the usually desired value of −2γPp which results in the initially
fastest growing signal. From Eq. (2), the initial growth rate for Δβ = −2γPp is G(z) = 1+
sinh2 [2γPpz], whereas the growth rate for Δβ = γPs is G(z)≈ 1+ 4

3 sinh2 [√3γPpz
]
. With Δβ =

γPs, the roots of Eq. (9) are f1 = f2 = Pp and f3 = −4Ps/3. In this case, m = 1, reducing the
elliptic function, sn, to the hyperbolic tangent function, tanh. The solution is thus rewritten as

F(z) =
4PpPssinh2

[
γz
√

Pp(3Pp +4Ps)
]

3Pp +4Ps +4Pssinh2 [γz
√

Pp(3Pp +4Ps)
] . (19)

In the interval −6γPp < Δβ < 2γPp, in which g is a real parameter, approximate solutions to
the roots of Eq. (14) are found by treating Ps as a small perturbation to the potential equation.
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The three non-zero roots are

ra =−16Ps
P2

p(
Pp +

1
6

Δβ
γ

)(
Pp− 1

2
Δβ
γ

) , (20a)

rb = Pp +
1
6

Δβ
γ

−12Ps

Ps − Δβ
γ

2Pp − Δβ
γ

, (20b)

rc = Pp − 1
2

Δβ
γ

−4Ps

3Pp +2 Δβ
γ

6Pp +
Δβ
γ

. (20c)

The first root, ra is the lowest root, thus it is equivalent to f3, and it is seen that this root is
proportional to −Ps. The other two roots are equivalent to f1 and f2. However, as rb is not
always greater than rc, it will depend on the values of Δβ , which root is equivalent to which f .
It is important to notice that they are both proportional to Pp. Therefore, under the assumption
that Pp � Ps, m ≈ 1, the elliptic function sn can be approximated with tanh for small values of
z. Thus, the solution can be expressed as

F(z)≈
− f2 f3
f2− f3

sinh2
[
γz
√

3 f1( f2 − f3)
]

1+ 1
f2

− f2 f3
f2− f3

sinh2
[
γz
√

3 f1( f2 − f3)
] . (21)

For very small values of z, the second term in the denominator can be neglected, reducing it to
an expression similar to Eq. (3). Consequently, we may apply the relations

√
3 f1( f2 − f3)≈ g

γ
, (22)

− f2 f3
f2 − f3

≈ Ps

(
2γPp

g

)2

, (23)

which, for the interval −4γPp < Δβ < γPp, have a relative error of less than 1% for Ps = 0
dBm, and this error decreases as the input power decreases. With this approximation, F may be
expressed as

F(z)≈ FQL(z)

1+
FQL(z)

Psat

= Ps

[
2γPp

g sinh2 (gz)
]2

1+ Ps
Psat

[
2γPp

g sinh2 (gz)
]2 , (24)

where g2 = (2γPp)
2 − (κ/2)2, κ = 2γPp +Δβ , and

Psat = f2 ≈
{

1
6 (

Δβ
γ −Ps)+Pp, −6Pp <

Δβ
γ < Ps,

− 1
2 (

Δβ
γ −Ps)+Pp, Ps <

Δβ
γ < 2Pp.

(25)

This final expression for F is a simple expression, using the quasi-linearized result to create
an expression that includes the saturation of the pumps. Psat is the upper limit of the power
that can be coupled into the idler. From this it is also clear that using a linear mismatch that
equals the nonlinear wave-number shift of the signal, γPs, enables complete power transfer from
the pumps into the signal and idler, whereas using a linear mismatch that equals the nonlinear
wave-number shift of the pump, i.e. Δβ =−2γPp, can only convert about 67%. However, in the
latter case the initial coupling efficiency is higher.
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If the two pumps have different powers, called Pa and Pb, where Pa > Pb, then (Pp −F)2 is
replaced by (Pa −F)(Pb −F) in Eq. (14), and 2Pp is replaced by Pa +Pb in Eq. (10). When
these changes are made, the solution is the same as Eq. (16). Because of the different pump
powers, the wave-number mismatch that results in full power transfer from the weaker pump is
Δβ = γPs + γ(Pa −Pb), whereas the fastest growing gain condition is Δβ =−γ(Pa +Pb).

3. Discussion

To show the validity of the proposed model, the evolution of the idler as predicted by Eq. (24)
has been plotted in Fig. 1 against the full solution, described by Eq. (16), as well as against the
quasi-linearized model, Eq. (2). From the figure it is seen that the new expression fits well until
the power begins to couple back into the pump. In all cases the new approximate expression
has a better correlation with the analytic solution than the conventional quasi-linear result in
Eq. (2).
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Fig. 1. Evolution of the power of the idler with Pp = 30 dBm and Ps = 0 dBm. The solid line
shows the full analytic solution, the dash-dotted line is the usual quasi-linearized solution
and the dashed line is the approximate solution found in this paper. It is evident that the
setup in (c) results in complete power transfer, whereas the usual desired setup (a) results in
the fastest growing idler. (b) shows that a zero wave-number mismatch results in an almost
complete power transfer.

Figure 2 shows the gain for different input powers. The gain has been evaluated by using
Eqs. (2), (21) and (24) and it also shows that the new approximation, Eq. (24), is a better
approximation to Eq. (21) than the usual approximation, Eq. (2). The new approximation takes
saturation into account, but since it does not include back coupling, it is only useful until back
coupling becomes significant. Before the system is in depletion, the gain is symmetric around
κ = 0 as predicted by Eq. (2), but when saturation sets in, the gain profile becomes asymmetric
which the new approximation also takes into account. If a setup is constructed with two pumps
placed symmetrically around the ZDW, then it is possible to obtain a flat gain spectrum over a
range of wavelengths, with very high signal gain. The wave-number mismatch is estimated by
Taylor expanding all the propagation constants around the ZDW. Because of the chosen pump
symmetry, all βn = dnβ (ω)/dωn|ωZD , where n is odd, will cancel out, and since β2 is zero at
the ZDW, the first term that has influence is β4. The mismatch is thus approximated as

Δβ ≈ β4

12

[
(ωs −ωZD)

4 − (ωp −ωZD)
4] . (26)
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Fig. 2. Gain calculated at γL = 3 W−1 with Pp = 30 dBm. The solid line is the analytically
calculated gain, the dashed line is the gain calculated from Eq. (2) and the dash-dotted line
is calculated using the approximations described in this paper. In (a) the pumps are not in
saturation, so there is no significant difference between them. However, in (b) the pumps
begin to be in saturation, which Eq. (2) does not take into account. In (c) the input power is
so high that the pumps have depleted and for some values of Δβ/γ the power has started to
couple back into the pumps resulting in lower gain. Only the full analytic solution accounts
for this phenomenon.

β4 can obtain both positive and negative values, depending on the chosen fiber [21], but to get
a uniform gain over a wide range, the important factor will be to have β4 as close to zero as
possible, which allows the mismatch to be maintained close to zero over a large bandwidth. This
is demonstrated in Fig. 3, which shows gain profiles for a highly nonlinear fiber (HNLF), [6],
with L = 250 m, λZD = 1560.5 nm, β4(λZD) = 8.82× 10−55 s4/m and γ = 11.5 W−1km−1,
calculated using Eq. (24). If Eq. (1) is solved numerically and a loss of 0.74 dB/km is included,
the obtained spectrum is similar to that shown in Fig. 3, only the gain is lower by 1.5 to 2 dB. It
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Fig. 3. Gain profiles for 30-dBm pumps. For cases in which the pumps are placed sym-
metrically around the ZDW, as in (a) and (b), it is seen that the gain is wide and flat over
113 and 123 nm for the undepleted (a) and depleted (b) case, respectively. It is possible to
slightly misalign one of the pumps and continue to have wide and flat gain (c).

is important for the pumps to be placed far from the ZDW, in this case a separation of roughly
60 nm was used, in order to avoid the creation of extra waves by cascaded FWM [22], which
invalidate the approximation of only 4 distinct frequencies. Furthermore, simulations show that
when the signal is placed relatively close to either of the pumps, then the coupling efficiency is
greatly reduced because the signal undergoes degenerate FWM with the nearer pump. For this
fiber setup, degenerate FWM begins to be significant at a separation of roughly 10 nm. This
effect reduces the actual obtainable bandwidth.

In Fig. 3, it is also shown that even if the symmetry is slightly broken, the gain spectrum
remains reasonably flat, and its width even increases slightly.
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4. Conclusion

We have obtained the exact solution of the dual-pumped FOPA equations, as well as a simple,
yet very useful, approximate solution which includes pump depletion and nonlinear detuning.
We have shown with a concrete example, which shows that it is possible to obtain flat gain
bandwidths in the 100-nm range, that the model provides a simple and fast way of modeling
the gain of a FOPA.

We have also shown that although the gain increases more rapidly as a function of fiber length
when Δβ =−2γPp, this wave-number mismatch does not result in complete power conversion,
as is the case when Δβ = γPs.
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