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Temporally uncorrelated photon-pair generation by dual-pump four-wave mixing
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We study the preparation of heralded single-photon states using dual-pump spontaneous four-wave mixing.
The dual-pump configuration, which in our case employs cross-polarized pumps, allows for a gradual variation
of the nonlinear interaction strength enabled by a birefringence-induced walk-off between the pump pulses. The
scheme enables the preparation of highly pure heralded single-photon states, and proves to be extremely robust
against the effect of nonlinear phase modulation at the required photon-pair production rates.
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I. INTRODUCTION

Optical technologies such as quantum communication
[1], quantum cryptography [2], and linear optical quantum
computing [3], are key elements in contemporary science.
Many of the proposals for realizing these technologies rely
on processing and distributing single-photon states [4]. For
this reason, a wide variety of methods have been developed
with the common objective of creating a single-photon source
[5]. An important subset of these methods is constituted
by the nonlinear quantum-optical phenomena; spontaneous
parametric down-conversion (SPDC) and spontaneous four-
wave mixing (SFWM). In SPDC, which may occur in a
second-order nonlinear medium, a pump photon is annihilated
while two photons (conventionally referred to as the signal and
idler photons) are created [6]. Similarly, SFWM can occur in a
third-order nonlinear medium by creating a signal-idler photon
pair at the expense of two annihilated pump photons [7]. Thus,
SPDC and SFWM share the ability to create signal and idler
photons that are fully correlated in their number distribution.
This property can be exploited to create single photons by a
technique called heralding, in which the detection of an idler
(signal) photon predicts the presence of the accompanying
signal (idler) photon.

Proposed schemes for realizing efficient linear optical
quantum computing rely on the quantum interference between
single photons [8] and require that the photons are in pure
quantum-mechanical states [9,10]. However, in general, the
signal and idler photons generated through SPDC or SFWM
exhibit spectral and temporal correlations which compromise
the purity of the heralded single-photon state [11]. This lack
of purity degrades quantum interference visibility and hence
decreases the obtainable efficiency in optical quantum logic
gates [12].

Postprocessing of the signal-idler pair allows for purifi-
cation of the heralded single-photon state. This purification
can be achieved by spectrally filtering out the correlated parts
of the joint signal-idler spectrum [13], or by sophisticated
methods such as temporal-mode matched filtering [14] or
mode-sensitive frequency conversion [15,16]. However, all of
these methods share a common downside in that they result
in additional photon losses and, consequently, lead to lower
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single-photon rates. This has provided an incentive, leading
researchers to a search for a means of reducing the need
for postprocess filtering and, in fact, much success has been
achieved by carefully controlling the dispersion properties of
the nonlinear optical waveguide [17–23]. The research has al-
most exclusively been focused on single-pump configurations,
even though such schemes, without filtering, do not allow for
entirely pure heralded single photons. This deficiency is due to
unavoidable spectral-temporal correlations, which arise from
the abrupt change of nonlinear interaction at the endpoints
of the waveguide. On the other hand, SFWM enables dual-
pump configurations [24,25], which despite their increased
complexity do not necessarily suffer from the same limitation
[19,26,27]. By demanding a full pump-pump walk-off inside
the waveguide, a gradual variation in the nonlinear interaction
can be achieved. This dual-pump configuration bears close
resemblance to a scheme in which the nonlinear interaction is
varied by tailoring the poling period in a quasi-phase-matched
second-order nonlinear crystal [28].

In this work, we show how dual-pump SFWM can provide
highly pure, heralded single-photon states. We consider a
birefringent optical fiber as the waveguide, although the
analysis applies to all polarization-maintaining waveguides
exhibiting a significant third-order nonlinearity. The effects
of self-phase modulation (SPM) and cross-phase modulation
(CPM), collectively referred to as nonlinear phase modulation
(NPM), are taken into account by performing a time-domain
analysis of the signal-idler joint temporal amplitude (JTA).
The JTA, which is related to the joint spectral amplitude by
a two-dimensional Fourier transform, can be made separable
in the emission times of the signal and idler photons. Full
separability, however, is only achievable if the two pump pulses
are allowed a full relative walk-off inside the waveguide [27].
To this end, we propose the use of type-II vectorial SFWM,
where the two pumps are cross polarized, as are the generated
signal and idler photons [29,30]. The group-velocity mismatch
induced by birefringence facilitates the required walk-off
between the pump pulses, which enables the generation of
highly pure heralded single-photon states. Furthermore, we
show that the introduction of NPM has only an insignificant
effect on the purity of the heralded state. This is in strong
contrast to recent findings for single-pump configurations [31],
for which NPM was found to significantly reduce photon-state
purity at the required pair-production rates.
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FIG. 1. Dual-pump SFWM for configurations with (left) near
pumps and (right) distant pumps. Arrows pointing downward indicate
photon annihilation whereas arrows pointing upward denote photon
creation.

II. THEORY

This work considers photon-pair generation based on the
nonlinear interaction of intense pump light in a third-order
nonlinear medium. By using two pump pulses (p and q), the
SFWM process enables the joint annihilation of a photon from
each pump and the creation of a signal-idler photon pair (s and
r). The process is restricted by frequency- and wave-number
conservation

�ω = ωp + ωq − ωr − ωs = 0,
(1)

�β = β(ωp) + β(ωq) − β(ωr ) − β(ωs) ≈ 0,

where β(ωj ) is the propagation constant at the angular
frequency ωj , with j ∈ p,q,r,s. From these constraints, it
follows that the signal-idler pair is spontaneously generated
either interiorly or exteriorly with respect to the pumps, as
illustrated in Fig. 1. We assume that all fields are linearly
polarized along one of two principal axes of a birefringent
fiber. Thus, the pumps may be either co-polarized or cross
polarized, in which cases the signal-idler photon pair is also
co- or cross-polarized [32].

For undepleted coherent pump pulses, the SFWM process
is conveniently modelled by using coupled-mode theory.
Including interpulse dispersion and assuming phase-matched
fields, the governing coupled-mode equations are of the form

(
∂z + β(1)

p ∂t

)
Ap = iγ (|Ap|2 + εpq |Aq |2)Ap, (2a)(

∂z + β(1)
q ∂t

)
Aq = iγ (|Aq |2 + εpq |Ap|2)Aq, (2b)(

∂z + β(1)
r ∂t

)
âr = iγ (εrp|Ap|2 + εrq |Aq |2)âr

+ iγ εApAqâ
†
s , (2c)(

∂z + β(1)
s ∂t

)
âs = iγ (εsp|Ap|2 + εsq |Aq |2)âs

+ iγ εApAqâ
†
r , (2d)

where âr,s is the idler, signal (slowly varying) annihilation
operator, Ap,q is the complex (slowly varying) envelope of
the pumps, β

(1)
j = ∂ωβ(ω)|ω=ωj

is the group slowness at the
frequency of the j th field, and γ is the (common) nonlinear
coupling coefficient proportional to the intensity-dependent
refractive index n2 [33]. For cross-polarized pumps, the effect
of polarization enters in Eqs. (2a)–(2d) implicitly through the
group slownesses β

(1)
j , and explicitly through the polarization-

dependent coupling coefficients εij for the CPM terms and ε

for the FWM terms. For an isotropic medium such as silica,
the third-order susceptibility has the tensorial property χ (3)

xxxx =

χ (3)
xxyy + χ (3)

xyxy + χ (3)
xyyx [34]. Therefore, the coefficients εij and

ε assume the value 2 in case of co-polarized fields and 2/3 for
cross-polarized fields.

In Eq. (2), we have made the realistic assumption that the
weak sidebands do not influence the classical pumps. This
enables us to solve Eqs. (2a) and (2b) independently from
Eqs. (2c) and (2d). By standard mathematical means the pump
evolutions may be found to satisfy [35]

Ap(z,t) = [Fp(ξp)]1/2 exp[iφp(z,t)], (3)

Aq(z,t) = [Fq(ξq)]1/2 exp[iφq(z,t)], (4)

where the retarded times ξp,q = t − βp,qz determine the pump
propagation Fp,q(ξp,q) = |Ap,q(0,t)|2. Note that we have
adopted the convenient notation βj ≡ β

(1)
j . Furthermore, the

pump phases φp,q are given as

φp(z,t) = φp0(t) + γFp(ξp)z + εpqγ

βpq

∫ ξq

ξp

dτFq(τ ), (5)

φq(z,t) = φq0(t) + γFq(ξq)z + εpqγ

βpq

∫ ξq

ξp

dτFp(τ ), (6)

with βpq = βp − βq . Thus, from Eqs. (3)–(6), it is readily seen
that the pumps evolve with unaltered shapes, while their phase
profiles change due to the effects of NPM.

The signal- and idler-mode operators, which are governed
by Eqs. (2c) and (2d), additionally satisfy the bosonic
commutation relations

[âm(z,t),ân(z,t ′)] = 0,
(7)

[âm(z,t),â†
n(z,t ′)] = δmnδ(t − t ′),

where m,n ∈ r,s, and δmn and δ(t) are the Kronecker and Dirac
delta functions, respectively. Due to the linearity of Eqs. (2c)
and (2d) in the mode operators, their solution may be written in
a quantum input-output (IO) form. Denoting by b̂r,s(t) the out-
put mode operators at z = l and output time t , and by âr,s(t ′) the
input mode operators at z = 0 and input time t ′, the IO form is

b̂r (t) =
∫ ∞

−∞
dt ′[Grr (t,t ′)âr (t ′) + Grs(t,t

′)â†
s (t ′)], (8)

b̂s(t) =
∫ ∞

−∞
dt ′[Gss(t,t

′)âs(t
′) + Gsr (t,t ′)â†

r (t ′)], (9)

where Gmn are the Green (transfer) functions associated with
the governing coupled-mode equations. These Green functions
depend implicitly on the fiber length l, group slownesses βj ,
and pump input profiles. As the output mode operators b̂r,s

are also subject to the commutation relations of Eq. (7), the
following constraints apply to the set of Green functions:

[b̂r (tr ),b̂†r (t ′r )] =
∫ ∞

−∞
dt ′[Grr (tr ,t

′)G∗
rr (t ′r ,t

′)

−Grs(tr ,t
′)G∗

rs(t
′
r ,t

′)] = δ(tr − t ′r ), (10)

[b̂r (tr ),b̂s(ts)] =
∫ ∞

−∞
dt ′[Grr (tr ,t

′)Gsr (ts ,t
′)

−Grs(tr ,t
′)Gss(ts ,t

′)] = 0. (11)

013819-2
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Since Eqs. (8) and (9) are symmetric with respect to the
indices r and s, similar constraints apply upon performing the
substitution r ↔ s in Eqs. (10) and (11).

The Green-function formalism is convenient for describing
photon statistics in optical processes such as homodyne
detection, frequency conversion, and parametric amplification
[36]. Moreover, it enables a simple treatment of photon-pair
generation through SFWM, for which the output quantum state
resulting from a two-continuous-mode vacuum input state,
denoted by |0,0〉, is

|ψ〉 ≈
[

1 +
∫ ∞

−∞

∫ ∞

−∞
dtsdtrAt (ts,tr )â†

s (ts)â
†
r (tr )

]
|0,0〉 .

(12)
This (unnormalized) state contains both a vacuum and a
photon-pair contribution. The temporal correlation between
a signal photon at output time ts and an idler photon at
output time tr is contained in the JTA function At , which
[see Appendix A] is related to the Green functions by two
equivalent forms

At (ts,tr ) =
∫ ∞

−∞
dt ′Gss(ts ,t

′)Grs(tr ,t
′)

=
∫ ∞

−∞
dt ′Gsr (ts,t

′)Grr (tr ,t
′). (13)

With the goal of obtaining the JTA, we now proceed by finding
the pair of Green functions Gss and Grs .

A. Perturbative Green functions

By definition, Gss and Grs are the responses obtained from
an s-impulse input. In the low-gain (perturbative) regime, the
FWM term in Eq. (2d) is readily neglected since the effect of
the created idler on the input signal is weak. This leaves only
the CPM terms in Eq. (2d), which is simplified by introducing
âs(z,t) = Âs(z,t) exp[iφs(z,t)], with

φs(z,t) = γ
∑

j=p,q

εsj

βsj

∫ t−βj z

t−βsz

dτFj (τ ). (14)

The equation for Âs is then (∂z + βs∂t )Âs = 0, which can be
easily checked to have the Green function Hss(t,t ′) = δ(t −
βsl − t ′). Transforming back, Gss is trivially related to Hss by
the phase term in Eq. (14), so

Gss(t,t
′) = δ(t − βsl − t ′) exp[iφs(l,t)]. (15)

Thus, the effect on an input signal, in the perturbative regime,
is described by a translation in time due to linear propagation
and a phase change due to CPM.

Proceeding with Grs , we use the time-domain collision
method formulated in Refs. [26,35]. Consider an input signal-
ray moving along the line from (0,t ′) to (l,t ′ + βsl). Then the
generated idler-ray exiting the waveguide at (l,t) is bound to
having been created at the collision point (zc,tc), where

zc = t ′ − (t − βr l)

βrs

, tc = βr t
′ − βs(t − βr l)

βrs

, (16)

and we assumed that βrs > 0. The effect of FWM is present
only in the collision region, which is infinitesimally thin due
to the impulse s input. The interaction is therefore captured by

integrating Eq. (2c) across the collision region while neglecting
the CPM terms. This yields the intermediate (collision) Green
function

G(c)
rs (t,t ′) = iεγ̄ (zc,tc) exp[i�(zc,tc)]

× H(t ′ − t + βr l)H(t − t ′ − βsl), (17)

where γ̄ (z,t) = γ [Fp(t − βpz)Fq(t − βqz)]1/2/βrs , and
�(z,t) = φp(z,t) + φq(z,t) − φs(z,t) is the relative phase
carried over to the idler field. The Heaviside step functions
H(t) ensure that interaction takes place only within the
waveguide, i.e., 0 < zc < l. Outside the collision region,
while propagating to the waveguide output (l,t), the generated
idler solely experiences CPM from the pumps and acquires
the residual phase [compare with Eq. (14)]

φ(r)
r (l,t) = γ

∑
j=p,q

εrj

βrj

∫ t−βj l

tc−βj zc

dτFj (τ ). (18)

It now follows from Eqs. (17) and (18) that the final form of
Grs is

Grs(t,t
′) = iεγ̄ (zc,tc) exp

[
i�(zc,tc) + iφ(r)

r (l,t)
]

× H(t ′ − t + βr l)H(t − t ′ − βsl). (19)

The same method enables us to find the two remaining Green
functions Grr and Gsr . Their forms are, however, nearly
identical to those of Gss and Grs , and we therefore omit doing
so here.

B. Joint temporal amplitude

Combining Eqs. (13), (15), and (19), one arrives at

At (ts,tr ) = iεγ̄ (zc,tc) exp
{
i
[
φp(zc,tc) + φq(zc,tc) + φ(r)

r (l,tr )

+φ(r)
s (l,ts)

]}
H(ts − tr + βrsl)H(tr − ts), (20)

in which φ(r)
s has the same form as Eq. (18), but with r → s. In

terms of the signal and idler output times ts and tr , the collision
coordinates are given by

zc = l − tr − ts

βrs

, tc = βr ts − βstr

βrs

, (21)

resulting in the modified arguments of the two Heaviside
functions.

For the generation of pure-state heralded single photons,
which is the main interest in this work, it is necessary for
the JTA to be factorable, enabling it to be written in the
uncorrelated form

At (ts ,tr ) = As(ts)Ar (tr ). (22)

In this case, a measurement of the idler (signal) photon, brings
no additional temporal information concerning the heralded
signal (idler) photon [17]—the pair is temporally uncorrelated.
In essence, this means that the temporal distributions of each
of the two potential photons are determined, a priori and
independently, by the pump-pulse durations and waveguide
properties. An alternative way of seeing this is by inserting
Eq. (22) into Eq. (12), after which separation of the integrals
results in a product state. With this in mind, we now consider
two examples for which the degree of factorability differs
greatly.

013819-3
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Examples

For the examination of the JTA, and for the remaining part
of the paper, we model the input pumps as unchirped Gaussian
profiles

Ap(t) =
(

Ep

π1/2τp

)1/2

exp

[−(t + βpz0)2

2τ 2
p

]
, (23)

where Ep is the pulse energy, and τp is the pulse width. The
amplitude profile for pump q is similar. The length variable z0

indicates the distance-coordinate in the waveguide, where
the pumps are maximally overlapped. We consider only the
symmetric case z0 = l/2, for which the overlap between
the pulsed pumps is largest at the waveguide midpoint.

Neglecting the contribution from NPM, Fig. 2 illustrates the
JTA function in two vastly different cases. The white dashed
lines indicate the waveguide endpoints (bottom-beginning
and top-end), which are mathematically described by the
Heaviside functions. In Fig. 2(a), we show the standard case
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FIG. 2. Absolute value of the JTA for two different cases of
dispersion, but identical pump durations τp = τq = τ = 1 ps, and
fiber length l = 10 m. In panel (a) βpq = 0 ps/m, βsq = 0.5 ps/m, and
βrp = 0.7 ps/m, while in panel (b) βpq = 2 ps/m, βsq = 0.2 ps/m,
and βrp = −0.2 ps/m. The latter configuration illustrates how pump-
pump walk-off enables a gradually varying interaction which is
strongest at the fiber midpoint.

with βp ≈ βq < βs ≈ βr , typically obtained for co-polarized
pumps placed in close vicinity of a waveguide zero-dispersion
frequency. Since the pumps are propagating at similar speeds,
this situation is comparable to what may be obtained using
single-pump configurations. The JTA, in this case, exhibits
large temporal correlation in the signal-idler photon pair. This
is typical for single-pump configurations although the degree
of correlation may be greatly reduced by virtue of dispersion
engineering. Especially two cases have been exhaustively
studied and demonstrated, for which the JTA is oriented either
horizontally (vertically) [18] or at an angle of −45◦ [17].
However, both of these configurations exhibit strong abrupt
changes in nonlinear interaction at the waveguide endpoints
resulting in the well-known sinc-like behavior of the joint
spectral amplitude [13,21]. The JTAs of these configurations
have recently been carefully analyzed in Ref. [31], and are
therefore omitted here. To circumvent the issue related to
the sinc-like behavior, one may instead exploit the extra
degree of freedom enabled by a dual-pump configuration as
shown in Fig. 2(b). In this situation, the nonlinear interaction
is, due to pump-pump walk-off, absent near the waveguide
endpoints (see Appendix B). Although the shown JTA does
exhibit a small degree of correlation, it is possible to make
it factorable. In particular, correlation is absent if the JTA
contours are oriented either vertically, horizontally, or have
common eccentricity of 0 (are circular). This is the subject of
the following section.

C. Purity criterion

The temporal purity of a heralded photon can be extracted
from the biphoton part of the SFWM-produced quantum state

|ψ1〉 =
∫∫

dtsdtrAt (ts ,tr )â†
s (ts)â

†
r (tr ) |0,0〉 , (24)

by performing either of the traces P = Tr(π2
s ) = Tr(π2

r ),
where πs,r = Trr,s(|ψ〉〈ψ |) are the density operators associ-
ated with the signal and idler subsystem, respectively. (See
Appendix C for a detailed analysis of the heralding process.)
Irrespective of the subsystems considered, the purity may be
formulated as the quadruple integral [27]

P = 1

R2

∫∫∫∫
dtsdtrdt ′sdt ′rAt (ts,tr )

×A∗
t (t ′s ,tr )A∗

t (ts ,t
′
r )At (t

′
s ,t

′
r ), (25)

where R is the photon-pair production rate (probability of
pair generation per pair of pump pulses), which is included to
normalize the heralded single-photon state

R =
∫∫

dtsdtr |At (ts,tr )|2. (26)

For reasons made apparent in the preceding section, we
are particularly interested in cases where a full pump-pump
collision is allowed in the waveguide. It is therefore intriguing
to neglect the Heaviside functions in the JTA, enabling an
analytical evaluation of Eq. (25):

Pf = σp,q |βrpβsq − βrqβsp|√(
β2

rp + β2
rqσ

2
p,q

)(
β2

sp + β2
sqσ

2
p,q

) , (27)
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in which we have defined the fractional pump width as
σp,q = τp/τq . Under the same assumptions, and using the fact
that βrpβsq − βrqβsp = βrsβpq , one finds the full pump-pump
collision generation rate given as

Rf = ε2γ 2EpEq

|βrsβpq | . (28)

Note that Eq. (27) is only strictly valid without the effects
of NPM, and should therefore be considered mostly as a
guideline at low and moderate pair-production rates (R <

0.1), for which occurrences of multiphoton pair states can
readily be neglected. Equation (28) offers a reference for the
generation rate R, and it is noteworthy that the full collision
pair-production rate Rf depends on the pulse energies and is
independent of the waveguide length. Instead, the important
length scale is the effective interaction distance, which is
determined by the interpulse walk-off between the two pumps
[27]. Moreover, Eq. (27) leads to an important criterion for
unit purity, stating that the relative group slownesses and
pump-pulse widths should satisfy the relationship

βrpβsp = −σ 2
p,qβrqβsq . (29)

This result, which may also be obtained by requiring γ̄ (zc,tc)
to be separable [see Eq. (20)], is in agreement with the findings
of Ref. [27], in which a similar analysis was performed in the
spectral domain. We emphasize that the criterion in Eq. (29),
should not be satisfied by letting βpq = 0 or βrs = 0, because
both of these situations contradict the assumption of neglecting
the Heaviside functions. Instead, the criterion can be satisfied
symmetrically by pairwise pump-signal group-velocity match-
ing, i.e., βp = βr and βq = βs , or asymmetrically by requiring
either βp > βr > βq > βs or βr > βp > βs > βq , while at the
same time tuning the fractional pump width σp,q . It is not
in general straightforward to realize waveguide dispersions,
which simultaneously satisfy the phase-matching condition
and the purity criterion in Eq. (29), but a likely solution
incorporates linearly cross-polarized pumps (see Sec. IV).
With such a configuration, an extra degree of freedom is
available for controlling the group slownesses of the partic-
ipating fields. In particular, it becomes possible to introduce
group-velocity mismatches at like frequencies due to fiber
birefringence. Thus, adapting to a situation where the signal s

and pump p are co-polarized and cross-polarized compared to
the idler r and pump q, results in εrp = εsq = εpq = ε = 2/3
and εrq = εsp = 2 [33], which we use in the remaining part of
this paper.

III. NUMERICAL STUDIES

A. The Schmidt decomposition

The four Green functions have the Schmidt decompositions
[37,38]

Grr (t,t ′) =
∞∑

j=1

vrj (t)μju
∗
rj (t ′), (30a)

Grs(t,t
′) =

∞∑
j=1

vrj (t)νjusj (t ′), (30b)

Gsr (t,t ′) =
∞∑

j=1

vsj (t)νjurj (t ′), (30c)

Gss(t,t
′) =

∞∑
j=1

vsj (t)μju
∗
sj (t ′), (30d)

for which each pair of the (real) Schmidt coefficients μj and
νj obey the auxiliary equation μ2

j − ν2
j = 1 [38], and the

output vkj and input ukj Schmidt modes for k ∈ r,s constitute
four orthonormal sets. These decomposed forms of the Green
functions allow us to gain additional insight regarding the JTA.
Inserting the Schmidt decompositions of Eq. (30) into Eq. (13),
the JTA may be formulated by its own Schmidt decomposition

At (ts ,tr ) =
∞∑

j=1

λjvsj (ts)vrj (tr ), (31)

in which λj = μjνj are the resulting Schmidt coefficients. In
the regime of low pair-generation rate, νj 
 1, μj ≈ 1, and
hence λj ≈ νj . The basis functions of the JTA are seen to be the
output Schmidt modes vrj and vsj of the Green functions—in
agreement with intuition. This also explains the reason for
the pairing of Grr with Gsr and Gss with Grs in Eq. (13). It
is noteworthy that the separability of Grs and Gsr is both a
necessary and sufficient condition for achieving a separable
JTA. This implies that one only needs to determine Grs or Gsr

to establish the separability of the JTA. The Green functions
may also be found numerically by employing the method from
Refs. [39,40].

It now follows from inserting Eq. (31) into Eq. (26) that the
pair-generation rate is obtained simply as

R =
∞∑

j=1

λ2
j . (32)

Thus, the coefficients λ2
j should be interpreted as the gener-

ation probability (per set of pump pulses) of a signal-idler
photon pair with respective temporal wave-packet profiles vsj

and vrj . Similarly, by inserting Eq. (31) into Eq. (27), the
photon purity is expressed as

P = 1

R2

∞∑
j=1

λ4
j � 1, (33)

for which the ideal case of unity corresponds to no temporal
entanglement between the signal and idler photons. This
situation is obtained, only if the JTA has a Schmidt rank of
unity (separable) so that it may be expressed as the product
between a single set of temporal wave-packet modes, i.e.,
At (ts,tr ) = λ1vs1(ts)vr1(tr ).

B. Numerical results

By employing numerical tools for calculating the singular
value decomposition of the Green functions, as described in
Sec. III A, it is straightforward to obtain the photon purity
and the photon-pair production rate for any given JTA. In
the following, we do so for various fiber characteristics while
directing much of our attention to the effect of NPM. Because
Eqs. (27) and (29) were derived without the effect of NPM, we
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FIG. 3. Temporal purity P plotted versus the pair-production rate
R for βpq = 2 ps/m, fiber length l = 10 m, and common pump
duration τ = 1 ps. At moderate and high pair-production rates, the
symmetrically group-velocity-matched case βsq = βrp = 0 ps/m is
least affected by the effects of NPM.

only expect these expressions to be valid in the regime of very
low pair-production rates. However, the analytic results allow
a direct investigation of how NPM affects the single-photon
purity in various cases.

Figure 3 shows how the purity P is degraded by NPM
for increasing pair-production rates R for βpq = 2 ps/m, a
fiber length of l = 10 m, and identical pump durations of
τp = τq = 1 ps. The figure shows both the symmetrically-
group-velocity-matched case βsq = 0 ps/m, and two cases
with different degrees of asymmetric group-velocity matching
βsq = 0.1 ps/m and βsq = 0.4 ps/m. In all cases, the value
of βr is chosen to satisfy the purity criterion of Eq. (29), as
is apparent from the fact that all three cases converge to a
purity of unity at small pair-production rates. Moreover, this
means that the chosen parameters resulted in a full symmetric
pump-pump collision in the fiber. It is evident that the effect
of NPM has an enhanced impact on the purity as the value of
βsq increases, showing that the symmetrically-group-velocity-
matched case is least affected by NPM. In fact, the case βsq =
0 ps/m shows almost ideal behavior with purities P > 0.999
for pair-production rates as high as R = 0.08. However, both of
the considered asymmetrically group-velocity matched cases
also exhibit large purities (P > 0.98) for pair-production rates
R < 0.02.

Figure 4 shows both the amplitude and the phase
of a symmetrically- and an asymmetrically-group-velocity-
matched JTA. In both cases the interaction strength was chosen
to give a pair-production rate of R = 0.02. Furthermore, a full
pump-pump collision was achieved by using a fiber length of
l = 5 m, pump durations of τp = τq = 1 ps, and a difference in
group slowness between the pumps of βpq = 2 ps/m. For the
symmetrically-group-velocity-matched case, which is shown
in Figs. 4(a) and 4(c), the pumps and sidebands are pairwise
matched in group slowness, so that βsq = βrp = 0 ps/m. In
this case, the JTA amplitude is simply the product of two
independent Gaussian distributions of different mean values
but identical widths. The two mean values correspond to the
average output times of the signal and idler photons given

by βr l/2 and βsl/2, respectively. Thus the idler photon is on
average retarded by a factor �rs = βrsl/2 = 5 ps with respect
to the signal photon, as expected for a symmetric collision
between the pumps. Note that the output times are relative
to an average frame of reference for which βp = −βq and
should not be interpreted as absolute times. The JTA phase
shows how NPM from the pulsed pumps results in bell-like
chirps in the signal and idler output times. Furthermore, the
JTA phase displays a large degree of symmetry, which is
why the symmetrically-group-velocity-matched case is only
slightly affected by the effects of NPM. However, upon close
inspection, temporal correlation is found along a line at −45◦
through the interaction region. This correlation arises due
to the fact that a photon pair created at the beginning of
the pump-pump overlap (fourth quadrant with respect to the
interaction region), pairwise experience CPM while colliding
with the group-velocity mismatched pump (s with p and r

with q). In contrast, a photon pair generated at the end of
the pump-pump overlap is not subject to any significant CPM
from the group-velocity mismatched pump (second quadrant
with respect to the interaction region). Notably, this phase
asymmetry increases for higher pair-production rates and
thereby limits the purity, as observed in Fig. 3. In Figs. 4(b)
and 4(d), the asymmetrically-group-velocity-matched case is
shown for βsq = 0.25 ps/m, while βr is chosen to satisfy
the criterion in Eq. (29). The JTA amplitude remains a
separable function of the output times, although the temporal
wave-packet mode of an idler photon is now broader than that
of a signal photon. However, with asymmetric group-velocity
matching, the branches in the JTA phase are seen to depart from
being horizontal and vertical, introducing enhanced (phase)
correlation in the signal-idler biphoton temporal amplitude.

IV. SIMULTANEOUS PHASE- AND GROUP-VELOCITY
MATCHING

Until this point, we have postponed the issue of simultane-
ously achieving phase-matching as described by Eq. (1) and
group-velocity matching as formulated in Eq. (29). Potentially,
these conditions can be concurrently met by placing two
co-polarized pumps far apart in frequency to enable a full
pump-pump walk-off [27]. In this case, high-purity single-
photon states may be obtained by engineering the phase-
matching condition such that the signal-idler pair is generated
at the orthogonal polarization in close spectral vicinity to
each their pump. In search for a more versatile alternative,
we here show that both conditions are readily satisfied by
instead using the configuration of cross-polarized pumps. As
shown in Fig. 5, this configuration comes in two different
versions; frequency-degenerate pumps (left) and frequency-
nondegenerate pumps (right). Both versions have their own
distinct advantage: whereas the former is simple and easily
realized using a single laser source, the latter contains an extra
degree of freedom and so allows for more tunability.

The phase-matching condition can be explored by expand-
ing the propagation constant β(ω) to second order around
the average pump center-frequency ωa = (ωp + ωq)/2. By
adopting the notation �i = ωi − ωa and using the fact that
�q = −�p and �s = −�r , the phase-matching condition
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FIG. 4. JTA amplitude (top) and phase (bottom) for symmetric group-velocity matching (left) and asymmetric group-velocity matching
(right). In both cases, we used a fiber length of l = 5 m, a common pump duration of τ = 1 ps, and a difference in group slowness between
the pumps of βpq = 2 ps/m. In the asymmetrically-group-velocity-matched case, the difference in group slowness between pump q and the
signal s was βsq = 0.25 ps/m, resulting in a noticeable skewness in the phase profile of the JTA. The blue solid lines in the JTA phases indicate
contour lines of the corresponding JTA amplitudes, while the white dashed lines, as previously, indicate the bounding region of the Heaviside
functions.

becomes

�β = �β(1)(�p + �r ) + β(2)(�2
p − �2

r

)
, (34)

where we defined �β(1) = β(1)
x − β(1)

y with the subscripts
denoting axis of linear polarization. Additionally, we made the
reasonable assumption that β(2) is independent of polarization
[33]. It directly follows from Eq. (34) that �β = 0 requires

ω

x

y

q

ps

r

ω

x

y

q

p

s

r

FIG. 5. Dual-pump cross-polarized SFWM with (left) frequency-
degenerate pumps and (right) frequency-nondegenerate pumps. Both
configurations produce cross-polarized signal-idler photon pairs.

the frequencies to obey

�β(1) = −β(2)(�p − �r ), (35)

or equivalently

�β(1) = β(2)(�q − �s). (36)

Notably, since the sign of �β(1) can be altered simply by
exchanging the pump input polarizations with respect to the
waveguide slow and fast axes, the phase-matching condition
can be satisfied for both positive and negative values of β(2).
Moreover, Eqs. (35) and (36) express the fact that the proposed
setup is versatile in terms of tunability: the frequency of the
idler depends only on the frequency of the oppositely polarized
pump p (and similarly for the signal and pump q). Therefore,
by shifting the frequency of pump p, it is possible to tune the
idler frequency independently of the signal frequency, and vice
versa.

To explore the prospects of achieving the required group-
slowness matching as described by Eq. (29), Fig. 6 shows
an example of the group-slowness curves for (a) frequency-
degenerate pumps and (b) frequency-nondegenerate pumps.
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FIG. 6. Relative group-slowness curves with �β (1) = 1 ps/m and
β (2) = 0.03 ps2/m for (a) degenerate pumps and (b) distant pumps
with interiorly placed signal and idler waves.

The wavelengths of the pumps and the phase-matched signal
and idler, are marked on the curves to enable a comparison
of the relative group slownesses. It appears that, irrespective
of the configuration used, the idler (signal) is generated at
a wavelength so that it copropagates with the orthogonally
polarized pump p (q). This is clarified by evaluating the
relative slowness βrp (βsq):

βrp = −�β(1) − β(2)(�p − �r ) = −βsq . (37)

At phase-matched frequencies, which obey Eqs. (35) and
(36), the effect of Eq. (37) is that βrp = βsq = 0. Thus, in
the configuration of cross-polarized pumps considered here,
the signal-idler pair is pairwise group-velocity matched to
the pumps; the optimal situation with respect to purity of a
heralded single-photon state.

V. CONCLUSION

In this paper, we considered a scheme for generating photon
pairs using dual-pump spontaneous four-wave mixing in a
third-order nonlinear medium. This configuration enables a
controlled evolution of the nonlinear interaction inside the
waveguide due to pump-pump walk-off. In particular, the case
in which the pumps walk fully through each other inside the

nonlinear medium holds great promise for preparing highly
pure single-photon states. To show this, we derived a criterion
depending only on the group slownesses and pump durations,
which, when satisfied, renders the signal- and idler photons
temporally uncorrelated in the regime of low generation
rates. At high generation rates, pump-induced nonlinear phase
modulation introduces temporal phase correlations within the
signal-idler pair, resulting in a photon of degraded purity.
However, the observed impact was much weaker than that
of Ref. [31], in which a similar analysis was performed
for single-pump configurations. In particular, for the case of
symmetric group-velocity matching, in which the signal-idler
photons each copropagate with one of the pump pulses, the
effects of nonlinear phase modulation were insignificant for
pair-production rates (probabilities) as high as 0.1. Finally, we
showed how this symmetrically-group-velocity-matched case
is readily realized by cross-polarized pumps in a birefringent
waveguide.
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APPENDIX A: UNITING THE HEISENBERG AND
SCHRÖDINGER REPRESENTATIONS

This paper contains formulations originating from both the
Heisenberg picture (HP) and the Schrödinger picture (SP).
Whereas the IO relations, describing the quantum operator
evolution, derive from the HP, the JTA, used to describe the
quantum-state evolution, clearly originates from the SP. In the
following, we unite these descriptions by deriving a relation
between the Green functions and the JTA. The same method
has been used in a study of photon-pair generation by single-
pump SFWM [41].

A necessary result stems from the fact that the sideband
evolution is unitary. This property entails that the IO relations
given by Eqs. (8) and (9) are accompanied by a similar set of
output-input relations. The corresponding (backward) transfer
functions are related to the (forward) transfer Green functions
in a way so the output-input relations read [36]

âr (0,t ′) =
∫ ∞

−∞
dt[G∗

rr (t,t ′)b̂r (l,t) − Gsr (t,t ′)b̂†s (l,t)], (A1)

âs(0,t ′) =
∫ ∞

−∞
dt[G∗

ss(t,t
′)b̂s(l,t) − Grs(t,t

′)b̂†r (l,t)]. (A2)

Note especially that integration is now performed with respect
to the first argument of the Green functions.

Now suppose that an input state is given by the two-mode
vacuum, |ψ(z = 0)〉 = |0,0〉, so that

âr (0,t ′) |ψ(0)〉 = 0, âs(0,t ′) |ψ(0)〉 = 0. (A3)

By inserting Eq. (A1) into the first of Eq. (A3), one finds∫ ∞

−∞
dt[G∗

rr (t,t ′)b̂r (l,t) − Gsr (t,t ′)b̂†s (l,t)] |ψ(0)〉 = 0,

(A4)
which involves the input state vector |ψ(0)〉 and the output
mode operators b̂j (l,t) and is therefore clearly written in
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the HP. Converting the mode operators to the SP requires
introduction of the unitary (squeezing) operator Û (l), which
evolves the state vector according to Û (l) |ψ(0)〉 = |ψ(l)〉.
Operating from the left with Û (l) on Eq. (A4) results in

Û (l)
∫ ∞

−∞
dt[G∗

rr (t,t ′)b̂r (t) − Gsr (t,t ′)b̂†s (t)] |ψ(0)〉

=
∫ ∞

−∞
dt[G∗

rr (t,t ′)âr (t) − Gsr (t,t ′)â†
s (t)] |ψ(l)〉 = 0,

(A5)

where we have made use of the operator transformation âj =
U (l)b̂jU

†(l) [42] and inserted the identity U †(l)U (l) before
the state vector. Note also that we have omitted the spatial
dependence of the mode operators because it is obvious from
the context (b̂j is an evolved operator in the HP and âj is the
static operator in the SP).

Following a perturbative approach to first order, we now
solve Eq. (A5) approximately for the state vector |ψ(l)〉. This
comprises that we introduce the expansion

|ψ(l)〉 ≈ |ψ0〉 + |ψ1〉 , (A6)

where 〈ψ0|ψ0〉 � 〈ψ1|ψ1〉, and moreover assume that the
second term in Eq. (A5) (involving Gsr ) is a first-order term
while the first term (involving Grr ) is a zeroth-order term. This
immediately allows a partition of Eq. (A5) into its zero-order
components ∫ ∞

−∞
dtG∗

rr (t,t ′)âr (t) |ψ0〉 = 0, (A7)

and its first-order components∫ ∞

−∞
dtG∗

rr (t,t ′)âr (t) |ψ1〉 =
∫ ∞

−∞
dtGsr (t,t ′)â†

s (t) |ψ0〉 .

(A8)
Equation (A7), together with the corresponding equation for
the signal, is satisfied by the two-mode vacuum state. Thus, the
zeroth-order equation, unsurprisingly, has the solution |ψ0〉 =
|0,0〉. In order to solve the first-order equation described by
Eq. (A8), consider∫ ∞

−∞
dtG∗

rr (t,t ′)âr (t)
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dtrdt̄rdts

×Grr (tr ,t̄r )Gsr (ts ,t̄r )â†
r (tr )â†

s (ts) |0,0〉 . (A9)

To simplify Eq. (A9), one can use the commutation relation
for âr and â

†
r given in Eq. (7) in addition to the constraints

it forces upon the Green functions through Eq. (A1). This
constraint links the first arguments of G∗

rr and Grr according
to ∫ ∞

−∞
dtrG

∗
rr (tr ,t

′)Grr (tr ,t̄r ) ≈ δ(t ′ − t̄r ), (A10)

which is similar to Eq. (10), but with the integration performed
with respect to the first arguments rather than the second.
Equation (A9) now reduces to∫ ∞

−∞
dtsGsr (ts,t

′)â†
s (ts) |0,0〉 , (A11)

which is clearly identical to the right-hand-side of Eq. (A8).
Thus, from Eqs. (A9)–(A11) it is evident that the first-order

perturbative state vector |ψ1〉 is

|ψ1〉 =
∫ ∞

−∞

∫ ∞

−∞
dtsdtrAt (ts,tr )â†

s (ts)â
†
r (tr ) |0,0〉 , (A12)

where the integral kernel (joint temporal amplitude) has the
form

At (ts ,tr ) =
∫ ∞

−∞
dt̄Gsr (ts ,t̄)Grr (tr ,t̄). (A13)

Note that using the signal (second) part of Eq. (A3) results in
the alternative expression

At (ts ,tr ) =
∫ ∞

−∞
dt̄Gss(ts ,t̄)Grs(tr ,t̄), (A14)

in conformity with the constraints set by the commutation
relation in Eq. (11).

APPENDIX B: ANALYTIC SCHMIDT DECOMPOSITION
OF GAUSSIAN KERNEL

In the usual pump-degenerate schemes, i.e., SPDC or one-
pump SFWM, the nonlinear interaction along the waveguide is
constant. This entails that the phase-matching function, which
is used in the spectral description of the joint signal-idler
distribution [43,44], takes the form of a sinc-function which
inevitably results in spectral correlations in the signal-idler
photon pair. Note that the same spectral behavior results from
performing a two-dimensional Fourier transform of the JTA in
Eq. (20) due to the presence of the Heaviside functions [see also
Fig. 2(a)]. Fortunately, this behavior may be avoided by the use
of dual-pump SFWM if the pump-pump overlap is vanishing
at the endpoints of the waveguide and optimal halfway through
the waveguide. In addition to showing great promise with
respect to generation of pure single-photon states, this case
holds the advantage of enabling simple analytical expressions
for both the purity and the pair-production rate [see Eqs. (27)
and (28)].

In the case of a full symmetric pump-pump collision
between Gaussian pulses, the JTA has the simple form

At (ts,tr ) = K exp

[
− (tc − βpzc + βpl/2)2

2τp

]

× exp

[
− (tc − βqzc + βql/2)2

2τq

]
, (B1)

in which we have neglected the effects of NPM and defined
K = iγ ε(EpEq/πτpτq)1/2/βrs . The relative temporal delays
of βp,q l/2 ensure that the largest pump-pump overlap occurs
halfway through the waveguide in agreement with Eq. (23).
By inserting the collision coordinates from Eq. (21), the effect
of the symmetric relative temporal delays become apparent as
Eq. (B1) may be rewritten as

At (ts,tr ) = K exp

{
− [βrp(ts − βsl/2) − βsp(tr − βr l/2)]2

2β2
rsτ

2
p

− [βrq(ts − βsl/2) − βsq(tr − βr l/2)]2

2β2
rsτ

2
q

}
. (B2)

It appears from Eqs. (B2) and (31) that the Schmidt modes
vsj are centered at ts = βsl/2 and the modes vrj are centered
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at tr = βr l/2. Making the substitutions tj − βj l/2 → tj (this
change has no influence on the pair-production rate or the
purity of a heralded single-photon state), it is a simple task to
put the JTA in the simple form

At (ts,tr ) = K exp

(
− at2

s − 2bts tr + ct2
r

2

)
, (B3)

where the three real coefficients obey a > 0, c > 0, and ac −
b2 > 0 and are given as

a = α2
rp + α2

rq , (B4)

b = αrpαsp + αrqαsq, (B5)

c = α2
sp + α2

sq , (B6)

where αjk = βjk/(βrsτk). The mixed term in Eq. (B3), which
accounts for temporal correlation between the signal and
idler photons, disappears when αrpαsp = −αrqαsq . This purity
criterion is equivalent to Eq. (29). Furthermore, the Gaussian
kernel in Eq. (B3) has an analytical Schmidt decomposition
(for a thorough derivation, see Appendix A of Ref. [26]),
for which the two sets of Schmidt modes take the form of
the normalized Hermite–Gaussian functions and the Schmidt
coefficients satisfy

λ2
n = |K|2π (1 − κ2)κ2nτsτr , (B7)

where

κ = (ac)1/2 − (ac − b2)1/2

b
, (B8)

τs =
[

c

a(ac − b2)

]1/4

, (B9)

τr =
[

a

c(ac − b2)

]1/4

. (B10)

From Eqs. (B7)–(B10) one can find the purity P and the
generation rate R in terms of the coefficients a, b, and c.
They are given as

Pa,b,c = [(ac − b2)/(ac)]1/2, (B11)

and

Ra,b,c = |K|2/(ac − b2)1/2. (B12)

Finally, by insertion of Eqs. (B4)–(B6), one immediately
recovers Eqs. (27) and (28), as required.

Finally, we show explicitly why the proposed scheme
is inaccessible for single-pump configurations. To this end,
instead of neglecting the Heaviside functions as in Eq. (B1), we
approximate their product by an effective Gaussian [10,17,26].
For the shifted time variables defined below Eq. (B2), the
Heaviside functions are approximated according to

H(ts − tr + βrsl/2)H(tr − ts + βrsl/2)

≈ h exp

[
− (ts − tr )2

2w(βrsl/2)2

]
, (B13)

where h and w are fitting parameters on the order of unity,
which are otherwise unimportant. This approximation enables
us to obtain the conditions under which boundary effects are

negligible. To clarify, consider first the dual-pump configu-
ration which allows a large purity if αrpαsp + αrqαsq ≈ 0. In
this case, the boundary effects are negligible if min{a,c} >

(βrsl/2)−2. In other words, the condition enabling a full
pump-pump collision can be formulated as

min

{
β2

rp

τ 2
p

+ β2
rq

τ 2
q

,
β2

sp

τ 2
p

+ β2
sq

τ 2
q

}
>

4

l2
. (B14)

Conversely, for a single-pump configuration, the purity crite-
rion is formulated as −2αrpαsp = (βrsl/2)−2 [10,17] and, in
fact, this entails that boundary effects must play an important
role. To illustrate, assume that a = 2α2

rp > (βrsl/2)−2. Due
to the above criterion for purity, this immediately leads to the
opposite inequality for c; that is, c = 2α2

sp < (βrsl/2)−2. Thus,
to sum up, the condition min{a,c} > (βrsl/2)−2 can never be
obeyed for a single-pump configuration which, in agreement
with intuition, means that boundary effects are always present.

APPENDIX C: REDUCED STATE AND HERALDING

To examine the process of heralding we must consider the
density operator ρ̂ = |ψ〉〈ψ |, where the quantum state |ψ〉
resulting from SFWM is given by Eq. (12). In the course of this
analysis, we need to trace density operators of the general form

ρ̂ =
∫∫

dtkdtlM(tk,tl)â
†(tk) |0〉 〈0| a(tl)

→
n∑
k,l

Mklâ
†
k |{0}〉 〈{0}| âl , (C1)

where M(tk,tl) is an arbitrary function of its arguments. The
second version of Eq. (C1) is the discrete version of the first
with |{0}〉 = |01, . . . ,0n〉 being an n-dimensional vacuum
state. For each temporal component i we have the partial trace

Tri(ρ) = 〈0i |ρ̂|0i〉 + 〈1i |ρ̂|1i〉 , (C2)

where |0i〉 and |1i〉 are the zero- and one-photon states for
component i only (including photon states of higher photon
numbers has no effect in this case). Combining Eqs. (C1) and
(C2) yields

Tri(ρ) = Mii |{0′
i}〉 〈{0′

i}| +
∑
k,l �=i

Mklâ
†
k |{0′

i}〉 〈{0′
i}| âl , (C3)

where |{0′
i}〉 = |01, . . . ,0i−1,0i+1, . . . ,0n〉 is an

(n − 1)-dimensional vacuum state. Note that the first
term in Eq. (C3) stems from the inner product with |1i〉
and the summation results from the inner product with |0i〉.
Sequentially performing this operation over all n discrete
components yields the complete trace

Tr(ρ̂) =
∑

i

Mii →
∫

dtiM(ti ,ti), (C4)

where the second version is now the continuous version of the
first.

Returning to the density operator ρ̂ associated with the state
generated from SFWM, it may be written as

ρ̂ = |ψ0〉 〈ψ0| + |ψ1〉 〈ψ0| + |ψ0〉 〈ψ1| + |ψ1〉 〈ψ1| , (C5)
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where |ψ0〉 and |ψ1〉 correspond to the two terms in Eq. (12)
(which were derived in Appendix A). To obtain the reduced
density operator for the signal, one can sequentially trace the
idler degrees of freedom for the four terms in Eq. (C5). Using
the discretization method outlined above, it is a simple exercise
to show that

Trr (|ψ0〉 〈ψ0|) = |0〉 〈0| , (C6)

and

Trr (|ψ0〉 〈ψ1|) = Trr (|ψ1〉 〈ψ0|) = 0. (C7)

To evaluate the partial trace of the last term in Eq. (C5) we
invoke the result from Eqs. (C1)–(C4) while noting that the
idler part of Eq. (A12) is similar to Eq. (C1). We find that

Trr (|ψ1〉 〈ψ1|) =
∫∫

dt ′sdt ′′s Ks(t
′
s ,t

′′
s )â†

s (t ′s) |0〉 〈0| âs(t
′′
s ),

(C8)

where the signal kernel

Ks(t
′
s ,t

′′
s ) =

∫
dtrAt (t

′
s ,tr )A∗

t (t ′′s ,tr ) (C9)

is Hermitian, Ks(t ′s ,t
′′
s ) = K∗

s (t ′′s ,t ′s). Combining the preceding
results, the reduced state of the signal has the density operator

ρ̂s = |0〉 〈0| +
∫∫

dt ′sdt ′′s Ks(t
′
s ,t

′′
s )â†

s (t ′s) |0〉 〈0| âs(t
′′
s ),

(C10)

which evidently does not describe the process of heralding in
which signal information is retained only if an idler photon
is detected. Instead, let n̂r be the idler number operator. Then
a heralded signal photon is described by the reduced density
operator

ρ̂sh = Trr (|ψ〉 〈ψ | n̂r ) = Trr [(|ψ0〉 + |ψ1〉) 〈ψ1| n̂r ]

= Trr [(|ψ0〉 + |ψ1〉) 〈ψ1|] = Trr (|ψ1〉 〈ψ1|). (C11)

Thus, the density operator for a heralded signal is simply
the partial idler trace of the biphoton part of the output
quantum state given by Eq. (C8). Note that the heralded
signal state is also uniquely determined by the JTA through
the signal kernel in Eq. (C9), which appears twice in the
expression for the purity in Eq. (25). Expressing the signal
kernel in terms of the JTA Schmidt decomposition in Eq. (31),
yields

Ks(t
′
s ,t

′′
s ) =

∑
j

λ2
j vsj (t ′s)v

∗
sj (t ′′s ). (C12)

The heralded signal photon is in general in a mixed state
of temporal wave-packet modes vsj with weights λ2

j . Only
if λj = 0 for j > 1 is the photon in a truly pure state, as
required for optimal quantum interference.
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[28] A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A.
G. White, Opt. Express 19, 55 (2011).

[29] J. Fan and A. Migdall, Opt. Express 13, 5777 (2005).
[30] C. Reimer, M. Kues, L. Caspani, B. Wetzel, P. Roztocki, M.

Clerici, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi et al.,
Nat. Commun. 6, 8236 (2015).

[31] B. Bell, A. McMillan, W. McCutcheon, and J. Rarity, Phys. Rev.
A 92, 053849 (2015).

[32] Q. Lin, F. Yaman, and G. P. Agrawal, Phys. Rev. A 75, 023803
(2007).

[33] G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, Amsterdam,
2013).

[34] R. W. Boyd, Nonlinear Optics (Academic Press, New York,
2008).

[35] L. Mejling, D. S. Cargill, C. J. McKinstrie, K. Rottwitt, and
R. O. Moore, Opt. Express 20, 27454 (2012).

[36] C. J. McKinstrie, Opt. Commun. 282, 583 (2009).
[37] S. L. Braunstein, Phys. Rev. A 71, 055801 (2005).
[38] C. J. McKinstrie and M. Karlsson, Opt. Express 21, 1374 (2013).
[39] H. J. McGuinness, M. G. Raymer, and C. J. McKinstrie, Opt.

Express 19, 17876 (2011).
[40] D. V. Reddy, M. G. Raymer, C. J. McKinstrie, L. Mejling, and

K. Rottwitt, Opt. Express 21, 13840 (2013).
[41] D. L. P. Vitullo and M. G. Raymer (private communication).
[42] C. J. McKinstrie, M. G. Raymer, S. Radic, and M. V. Vasilyev,

Opt. Commun. 257, 146 (2006).
[43] T. E. Keller and M. H. Rubin, Phys. Rev. A 56, 1534 (1997).
[44] W. P. Grice and I. A. Walmsley, Phys. Rev. A 56, 1627 (1997).

013819-12

http://dx.doi.org/10.1364/OE.19.000055
http://dx.doi.org/10.1364/OE.19.000055
http://dx.doi.org/10.1364/OE.19.000055
http://dx.doi.org/10.1364/OE.19.000055
http://dx.doi.org/10.1364/OPEX.13.005777
http://dx.doi.org/10.1364/OPEX.13.005777
http://dx.doi.org/10.1364/OPEX.13.005777
http://dx.doi.org/10.1364/OPEX.13.005777
http://dx.doi.org/10.1038/ncomms9236
http://dx.doi.org/10.1038/ncomms9236
http://dx.doi.org/10.1038/ncomms9236
http://dx.doi.org/10.1038/ncomms9236
http://dx.doi.org/10.1103/PhysRevA.92.053849
http://dx.doi.org/10.1103/PhysRevA.92.053849
http://dx.doi.org/10.1103/PhysRevA.92.053849
http://dx.doi.org/10.1103/PhysRevA.92.053849
http://dx.doi.org/10.1103/PhysRevA.75.023803
http://dx.doi.org/10.1103/PhysRevA.75.023803
http://dx.doi.org/10.1103/PhysRevA.75.023803
http://dx.doi.org/10.1103/PhysRevA.75.023803
http://dx.doi.org/10.1364/OE.20.027454
http://dx.doi.org/10.1364/OE.20.027454
http://dx.doi.org/10.1364/OE.20.027454
http://dx.doi.org/10.1364/OE.20.027454
http://dx.doi.org/10.1016/j.optcom.2008.10.037
http://dx.doi.org/10.1016/j.optcom.2008.10.037
http://dx.doi.org/10.1016/j.optcom.2008.10.037
http://dx.doi.org/10.1016/j.optcom.2008.10.037
http://dx.doi.org/10.1103/PhysRevA.71.055801
http://dx.doi.org/10.1103/PhysRevA.71.055801
http://dx.doi.org/10.1103/PhysRevA.71.055801
http://dx.doi.org/10.1103/PhysRevA.71.055801
http://dx.doi.org/10.1364/OE.21.001374
http://dx.doi.org/10.1364/OE.21.001374
http://dx.doi.org/10.1364/OE.21.001374
http://dx.doi.org/10.1364/OE.21.001374
http://dx.doi.org/10.1364/OE.19.017876
http://dx.doi.org/10.1364/OE.19.017876
http://dx.doi.org/10.1364/OE.19.017876
http://dx.doi.org/10.1364/OE.19.017876
http://dx.doi.org/10.1364/OE.21.013840
http://dx.doi.org/10.1364/OE.21.013840
http://dx.doi.org/10.1364/OE.21.013840
http://dx.doi.org/10.1364/OE.21.013840
http://dx.doi.org/10.1016/j.optcom.2005.07.023
http://dx.doi.org/10.1016/j.optcom.2005.07.023
http://dx.doi.org/10.1016/j.optcom.2005.07.023
http://dx.doi.org/10.1016/j.optcom.2005.07.023
http://dx.doi.org/10.1103/PhysRevA.56.1534
http://dx.doi.org/10.1103/PhysRevA.56.1534
http://dx.doi.org/10.1103/PhysRevA.56.1534
http://dx.doi.org/10.1103/PhysRevA.56.1534
http://dx.doi.org/10.1103/PhysRevA.56.1627
http://dx.doi.org/10.1103/PhysRevA.56.1627
http://dx.doi.org/10.1103/PhysRevA.56.1627
http://dx.doi.org/10.1103/PhysRevA.56.1627

