164 research outputs found

    Ringed impact craters on Venus: An analysis from Magellan images

    Get PDF
    We have analyzed cycle 1 Magellan images covering approximately 90 percent of the venusian surface and have identified 55 unequivocal peak-ring craters and multiringed impact basins. This comprehensive study (52 peak-ring craters and at least 3 multiringed impact basins) complements our earlier independent analysis of Arecibo and Venera images and initial Magellan data and that of the Magellan team

    Triton's surface age and impactor population revisited in light of Kuiper Belt fluxes: Evidence for small Kuiper Belt objects and recent geological activity

    Get PDF
    Neptune's largest satellite, Triton, is one of the most fascinating and enigmatic bodies in the solar system. Among its numerous interesting traits, Triton appears to have far fewer craters than would be expected if its surface was primordial. Here we combine the best available crater count data for Triton with improved estimates of impact rates by including the Kuiper Belt as a source of impactors. We find that the population of impactors creating the smallest observed craters on Triton must be sub-km in scale, and that this small-impactor population can be best fit by a differential power-law size index near -3. Such results provide interesting, indirect probes of the unseen small body population of the Kuiper Belt. Based on the modern, Kuiper Belt and Oort Cloud impactor flux estimates, we also recalculate estimated ages for several regions of Triton's surface imaged by Voyager 2, and find that Triton was probably active on a time scale no greater than 0.1-0.3 Gyr ago (indicating Triton was still active after some 90% to 98% of the age of the solar system), and perhaps even more recently. The time-averaged volumetric resurfacing rate on Triton implied by these results, 0.01 km3^3 yr−1^{-1} or more, is likely second only to Io and Europa in the outer solar system, and is within an order of magnitude of estimates for Venus and for the Earth's intraplate zones. This finding indicates that Triton likely remains a highly geologically active world at present, some 4.5 Gyr after its formation. We briefly speculate on how such a situation might obtain.Comment: 14 pages (TeX), plus 2 postscript figures Stern & McKinnon, 2000, AJ, in pres

    Estimates of Comet Fragment Masses from Impact Crater Chains on Callisto and Ganymede

    Get PDF
    Chains of impact craters, or catenae, have been identified in Voyager images of Callisto and Ganymede. Although these resemble in some respects secondary crater chains, the source craters and basins for the catenae cannot be identified. The best explanation is a phenomenon similar to that displayed by former comet Shoemaker-Levy 9; tidal (or other) breakup close to Jupiter followed by gradual orbital separation of the fragments and collision with a Galilean satellite on the outbound leg of the trajectory. Because the trajectories must pass close to Jupiter, this constrains the impact geometry (velocity and impact angle) of the individual fragments. For the dominant classes of impactors, short period Jupiter-family comets and asteroids, velocities at Callisto and Ganymede are dominated by Jovian gravity and a satellite's orbital motion, and are insensitive to the pre-fragmentation heliocentric velocity; velocities are insensitive to satellite gravity for all impactor classes. Complex crater shapes on Callisto and Ganymede are determined from Voyager images and Schmidt-Holsapple scaling is used to back out individual fragment masses. We find that comet fragment radii are generally less than about 500 m (for ice densities) but can be larger. These estimates can be compared with those for the Shoemaker-Levy 9 impactors

    Thin Ice Lithospheres and High Heat Flows on Europa From Large Impact Structure Ring-graben

    Full text link
    Craters are probes of planetary surface and interior properties. Here we measure depths, widths, and spacing of circumferential ring-graben surrounding the two largest multiring impact structures on Europa, Tyre and Callanish. We estimate formation conditions including the ice shell structure. The radial extension necessary to form these graben is thought to be caused by asthenospheric drag of warmer, more ductile ice and/or water flowing toward the excavated center of the crater, under a brittle-elastic lithospheric lid. Measurements of graben depths from stereo-photoclinometric digital elevation models result in estimates of displacement, strain, and stress experienced by the ice shell. Graben widths are used to estimate the intersection depth of the bounding normal faults, a quantity related to the brittle-ductile transition depth that approximates elastic shell thickness during crater collapse. Heat flows at the time of crater formation as well as ice lithosphere and total shell thickness are thus also constrained. Average widths and depths tend to decrease with increasing distance from the structure center, while inter-graben spacing generally increases. Varied assumptions yield plausible total conductive ice shell thickness estimates between 4-8 and 2.5-5 km for Tyre and Callanish, respectively, and heat flows of ~70-115 (+/-30) mW m^-2 for realistic thermal conductivities, consistent with other geophysical estimates for Europa. Higher heat flows are consistent with thin (<10 km), conductive ice shells and impact breaching, or penetration of the stagnant lid for a convecting ice shell. Callanish, geologically younger, formed in a time or region of greater heat flow than Tyre.Comment: 50 pages, 18 figures, 2 tables, published in JGR-Planet

    Teaching Complex, In-Depth Programs

    Get PDF
    Changing demographics of rural Extension audiences create challenges to program delivery, and multiple delivery methods may be needed to effectively improve skills and knowledge of clients. We examined the effectiveness of different delivery methods and changes in client skills, knowledge and abilities as a result of a complex, in-depth program, the Virginia Cow/Calf Management Course. Almost 500 producers took the 5-month course. Changes were measured from pre- and post-course surveys. Skills easily employed by the producers were readily adopted. Experiential learning opportunities and written materials had the greatest impact on producers, while Web-based information and discussion groups were marginally effective

    Cometary Nuclei and Tidal Disruption: The Geologic Record of Crater Chains on Callisto and Ganymede

    Get PDF
    Prominent crater chains on Ganymede and Callisto are most likely the impact scars of comets tidally disrupted by Jupiter and are not secondary crater chains. We have examined the morphology of these chains in detail in order to place constraints on the properties of the comets that formed them and the disruption process. In these chains, intercrater spacing varies by no more than a factor of 2 and the craters within a given chain show almost no deviation from linearity (although the chains themselves are on gently curved small circles). All of these crater chains occur on or very near the Jupiter-facing hemisphere. For a given chain, the estimated masses of the fragments that formed each crater vary by no more than an order of magnitude. The mean fragment masses for all the chains vary by over four orders of magnitude (W. B. McKinnon and P. M. Schenk 1995, Geophys. Res. Lett. 13, 1829-1832), however. The mass of the parent comet for each crater chain is not correlated with the number of fragments produced during disruption but is correlated with the mean mass of the fragments produced in a given disruption event. Also, the larger fragments are located near the center of each chain. All of these characteristics are consistent with those predicted by disruption simulations based on the rubble pile cometary nucleus model (in which nuclei are composed on numerous small fragments weakly bound by self-gravity), and with those observed in Comet D/Shoemaker-Levy 9. Similar crater chains have not been found on the other icy satellites, but the impact record of disrupted comets on Callisto and Ganymede indicates that disruption events occur within the Jupiter system roughly once every 200 to 400 years

    The 1990 update to strategy for exploration of the inner planets

    Get PDF
    The Committee on Planetary and Lunar Exploration (COMPLEX) has undertaken to review and revise the 1978 report Strategy for Exploration of the Inner Planets, 1977-1987. The committee has found the 1978 report to be generally still pertinent. COMPLEX therefore issues its new report in the form of an update. The committee reaffirms the basic objectives for exploration of the planets: to determine the present state of the planets and their satellites, to understand the processes active now and at the origin of the solar system, and to understand planetary evolution, including appearance of life and its relation to the chemical history of the solar system

    Investigating Europa’s Habitability with the Europa Clipper

    Get PDF
    The habitability of Europa is a property within a system, which is driven by a multitude of physical and chemical processes and is defined by many interdependent parameters, so that its full characterization requires collaborative investigation. To explore Europa as an integrated system to yield a complete picture of its habitability, the Europa Clipper mission has three primary science objectives: (1) characterize the ice shell and ocean including their heterogeneity, properties, and the nature of surface–ice–ocean exchange; (2) characterize Europa’s composition including any non-ice materials on the surface and in the atmosphere, and any carbon-containing compounds; and (3) characterize Europa’s geology including surface features and localities of high science interest. The mission will also address several cross-cutting science topics including the search for any current or recent activity in the form of thermal anomalies and plumes, performing geodetic and radiation measurements, and assessing high-resolution, co-located observations at select sites to provide reconnaissance for a potential future landed mission. Synthesizing the mission’s science measurements, as well as incorporating remote observations by Earth-based observatories, the James Webb Space Telescope, and other space-based resources, to constrain Europa’s habitability, is a complex task and is guided by the mission’s Habitability Assessment Board (HAB)
    • …
    corecore