15 research outputs found

    Multifunctional lanthanum tetraphosphonates: Flexible, ultramicroporous and proton-conducting hybrid frameworks

    Get PDF
    A new flexible ultramicroporous solid, La(H5DTMP)·7H2O (1), has been crystallized at room temperature using the tetraphosphonic acid H8DTMP, hexamethylenediamine-N,N,Nâ€Č,Nâ€Č-tetrakis(methylenephosphonic acid). Its crystal structure, solved by synchrotron powder X-ray diffraction, is characterised by a 3D pillared open-framework containing 1D channels filled with water. Upon dehydration, a new related crystalline phase, La(H5DTMP) (2) is formed. Partial rehydration of 2 led to La(H5DTMP)·2H2O (3). These new phases contain highly corrugated layers showing different degrees of conformational flexibility of the long organic chain. The combination of the structural study and the gas adsorption characterization (N2 and CO2) suggests an ultramicroporous flexible framework. NO isotherms are indicative of a strong irreversible adsorption of NO within the pores. Impedance data indicates that 1 is a proton-conductor with a conductivity of 8 × 10−3 S cm−1 at 297 K and 98% of relative humidity, and an activation energy of 0.25 eV.Proyecto nacional MAT2010-15175 (MICINN, España

    New nitric oxide releasing materials

    Get PDF
    The aim of this thesis was to examine the ability of metal organic frameworks (MOFs) to store and controllably release biologically significant amounts of nitric oxide (NO). Initial work involved the synthesis of a series of isostructural MOFs, known as M-CPO-27, which display coordinatively unsaturated metal sites (CUSs) when fully activated (guest solvent molecules both coordinated and uncoordinated to the metal atom are removed). Two of these frameworks (Ni and Co CPO-27) displayed exceptional performance over the entire cycle of activation, storage and delivery showing the largest storage and release of NO of any known porous material (up to 7 mmolg⁻Âč). These frameworks would therefore be considered for initial research into the formulation of MOFs, for possible use in medical applications. It was shown that they still release large amounts of NO even when placed inside porous paper bags, creams or hydrocolloids. The other versions of M-CPO-27 also displayed significant adsorption of NO however they show poor total NO release. It was also shown that it is possible to synthesise both Ni and Co CPO-27 using microwave synthesis without any detrimental effect to the porous structure. Several iron-based MOFs were also investigated for NO storage and release. The results showed that Fe MIL-88 based structures adsorb good amounts of NO but only release a small amount of the irreversibly adsorbed NO. Two successfully amine grafted giant pore MOFs were then investigated to attempt to improve the NO adsorption and release. This result was not observed however, due to the poor total amine grafting coverage and pore blockage resulting from the amines. In-situ IR studies reveal that when exposed to NO, activated Fe MIL-100 forms a chemical bond with the NO. The studies also displayed that when water is then allowed to attempt to replace the NO that only a small amount of NO is actually released, the majority of the NO either remains chemically bonded to the Fe atom or forms N₂O in conjunction with a Fe-OH group. Other MOFs were also successfully synthesised and characterised for NO storage and release. Both Ni succinate and Ni STA-12 display good adsorption and excellent release of NO. This indicates that Ni based MOFs show the best results for NO adsorption and release. In the conclusion of the thesis I am able to categorise the NO release ability of MOFs based on composition and formulate a theory as to why this happens

    New nitric oxide releasing materials

    No full text
    The aim of this thesis was to examine the ability of metal organic frameworks (MOFs) to store and controllably release biologically significant amounts of nitric oxide (NO). Initial work involved the synthesis of a series of isostructural MOFs, known as M-CPO-27, which display coordinatively unsaturated metal sites (CUSs) when fully activated (guest solvent molecules both coordinated and uncoordinated to the metal atom are removed). Two of these frameworks (Ni and Co CPO-27) displayed exceptional performance over the entire cycle of activation, storage and delivery showing the largest storage and release of NO of any known porous material (up to 7 mmolg⁻Âč). These frameworks would therefore be considered for initial research into the formulation of MOFs, for possible use in medical applications. It was shown that they still release large amounts of NO even when placed inside porous paper bags, creams or hydrocolloids. The other versions of M-CPO-27 also displayed significant adsorption of NO however they show poor total NO release. It was also shown that it is possible to synthesise both Ni and Co CPO-27 using microwave synthesis without any detrimental effect to the porous structure. Several iron-based MOFs were also investigated for NO storage and release. The results showed that Fe MIL-88 based structures adsorb good amounts of NO but only release a small amount of the irreversibly adsorbed NO. Two successfully amine grafted giant pore MOFs were then investigated to attempt to improve the NO adsorption and release. This result was not observed however, due to the poor total amine grafting coverage and pore blockage resulting from the amines. In-situ IR studies reveal that when exposed to NO, activated Fe MIL-100 forms a chemical bond with the NO. The studies also displayed that when water is then allowed to attempt to replace the NO that only a small amount of NO is actually released, the majority of the NO either remains chemically bonded to the Fe atom or forms N₂O in conjunction with a Fe-OH group. Other MOFs were also successfully synthesised and characterised for NO storage and release. Both Ni succinate and Ni STA-12 display good adsorption and excellent release of NO. This indicates that Ni based MOFs show the best results for NO adsorption and release. In the conclusion of the thesis I am able to categorise the NO release ability of MOFs based on composition and formulate a theory as to why this happens.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A comparison of zeolites and Metal Organic Frameworks as storage and delivery vehicles for biologically active nitric oxide

    No full text
    Zeolites and metal organic frameworks have been shown to be capable of storage and delivery of nitric oxide. Both the adsorption capacities and rate of delivery have been discovered to be dependent on the framework topology and composition for both classes of materials. In addition, the amount of nitric oxide which zeolites can store/deliver is especially easy to alter by applying slight changes in the materials composition. Finally, at the present time zeolites are more acceptable on toxicological grounds than metal organic frameworks.</p

    High-resolution solid-state 13C NMR spectroscopy of the paramagnetic metal-organic frameworks, STAM-1 and HKUST-1

    Get PDF
    Solid-state C-13 magic-angle spinning (MAS) NMR spectroscopy is used to investigate the structure of the Cu(II)-based metal-organic frameworks (MOFs), HKUST-1 and STAM-1, and the structural changes occurring within these MOFs upon activation (dehydration). NMR spectroscopy is an attractive technique for the investigation of these materials, owing to its high sensitivity to local structure, without any requirement for longer-range order. However, interactions between nuclei and unpaired electrons in paramagnetic systems (e.g., Cu(II)-based MOFs) pose a considerable challenge, not only for spectral acquisition, but also in the assignment and interpretation of the spectral resonances. Here, we exploit the rapid T-1 relaxation of these materials to obtain C-13 NMR spectra using a spin-echo pulse sequence at natural abundance levels, and employ frequency-stepped acquisition to ensure uniform excitation of resonances over a wide frequency range. We then utilise selective C-13 isotopic labelling of the organic linker molecules to enable an unambiguous assignment of NMR spectra of both MOFs for the first time. We show that the monomethylated linker can be recovered from STAM-1 intact, demonstrating not only the interesting use of this MOF as a protecting group, but also the ability (for both STAM-1 and HKUST-1) to recover isotopically-enriched linkers, thereby reducing significantly the overall cost of the approach.PostprintPeer reviewe

    Metal organic frameworks as NO delivery materials for biological applications

    No full text
    Metal organic frameworks (MOFs) are highly porous materials that can store significant amounts of gas, including nitric oxide. The chemical composition and toxicology of many (but not all) of these materials makes them potentially suitable for medical applications. In this paper, we will describe how triggered release methods can be used to deliver biologically relevant amounts of NO and then show how Ni, Co and Cu-containing MOFs are biologically active materials with potential applications in several different areas (anti-thrombosis, dermatology and wound healing, anti-bacterial, vasodilation etc.). We will also discuss the pros and cons of MOFs, including their chemical and biological stability and the toxicology of MOFs in general. (C) 2009 Elsevier Inc. All rights reserved.</p
    corecore