34 research outputs found

    Multiple Mating, Paternity and Complex Fertilisation Patterns in the Chokka Squid Loligo reynaudii

    Get PDF
    Polyandry is widespread and influences patterns of sexual selection, with implications for sexual conflict over mating. Assessing sperm precedence patterns is a first step towards understanding sperm competition within a female and elucidating the roles of male- and female-controlled factors. In this study behavioural field data and genetic data were combined to investigate polyandry in the chokka squid Loligo reynaudii. Microsatellite DNA-based paternity analysis revealed multiple paternity to be the norm, with 79% of broods sired by at least two males. Genetic data also determined that the male who was guarding the female at the moment of sampling was a sire in 81% of the families tested, highlighting mate guarding as a successful male tactic with postcopulatory benefits linked to sperm deposition site giving privileged access to extruded egg strings. As females lay multiple eggs in capsules (egg strings) wherein their position is not altered during maturation it is possible to describe the spatial / temporal sequence of fertilisation / sperm precedence There were four different patterns of fertilisation found among the tested egg strings: 1) unique sire; 2) dominant sire, with one or more rare sires; 3) randomly mixed paternity (two or more sires); and 4) a distinct switch in paternity occurring along the egg string. The latter pattern cannot be explained by a random use of stored sperm, and suggests postcopulatory female sperm choice. Collectively the data indicate multiple levels of male- and female-controlled influences on sperm precedence, and highlights squid as interesting models to study the interplay between sexual and natural selection

    Cryptic species and parallel genetic structuring in Lethrinid fish:Implications for conservation and management in the southwest Indian Ocean

    Get PDF
    Analysis of genetic variation can provide insights into ecological and evolutionary diversification which, for commercially harvested species, can also be relevant to the implementation of spatial management strategies and sustainability. In comparison with other marine biodiversity hot spots, there has been less genetic research on the fauna of the southwest Indian Ocean (SWIO). This is epitomized by the lack of information for lethrinid fish, which support socioeconomically important fisheries in the region. This study combines comparative phylogeographic and population genetic analyses with ecological niche modeling to investigate historical and contemporary population dynamics of two species of emperor fish (Lethrinus mahsena and Lethrinus harak) across the SWIO. Both species shared similarly shallow phylogeographic patterns and modeled historical (LGM) habitat occupancies. For both species, allele frequency and kinship analyses of microsatellite variation revealed highly significant structure with no clear geographical pattern and nonrandom genetic relatedness among individuals within samples. The genetic patterns for both species indicate recurrent processes within the region that prevent genetic mixing, at least on timescales of interest to fishery managers, and the potential roles of recruitment variability and population isolation are discussed in light of biological and environmental information. This consistency in both historical and recurrent population processes indicates that the use of model species may be valuable in management initiatives with finite resources to predict population structure, at least in cases wherein biogeographic and ecological differences between taxa are minimized. Paradoxically, mtDNA sequencing and microsatellite analysis of samples from the Seychelles revealed a potential cryptic species occurring in sympatry with, and seemingly morphologically identical to, L. mahsena. BLAST results point to the likely misidentification of species and incongruence between voucher specimens, DNA barcodes, and taxonomy within the group, which highlights the utility and necessity of genetic approaches to characterize baseline biodiversity in the region before such model-based methods are employedpublishersversionPeer reviewe

    Core Community Persistence Despite Dynamic Spatiotemporal Responses in the Associated Bacterial Communities of Farmed Pacific Oysters

    Get PDF
    A breakdown in host-bacteria relationships has been associated with the progression of a number of marine diseases and subsequent mortality events. For the Pacific oyster, Crassostrea gigas, summer mortality syndrome (SMS) is one of the biggest constraints to the growth of the sector and is set to expand into temperate systems as ocean temperatures rise. Currently, a lack of understanding of natural spatiotemporal dynamics of the host-bacteria relationship limits our ability to develop microbially based monitoring approaches. Here, we characterised the associated bacterial community of C. gigas, at two Irish oyster farms, unaffected by SMS, over the course of a year. We found C. gigas harboured spatiotemporally variable bacterial communities that were distinct from bacterioplankton in surrounding seawater. Whilst the majority of bacteria-oyster associations were transient and highly variable, we observed clear patterns of stability in the form of a small core consisting of six persistent amplicon sequence variants (ASVs). This core made up a disproportionately large contribution to sample abundance (34 ± 0.14%), despite representing only 0.034% of species richness across the study, and has been associated with healthy oysters in other systems. Overall, our study demonstrates the consistent features of oyster bacterial communities across spatial and temporal scales and provides an ecologically meaningful baseline to track environmental change

    Phenotypic divergence despite high gene flow in Chokka squid Loligo reynaudii (Cephalopoda: Loliginidae): implications for fishery management

    Get PDF
    The commercially important chokka squid Loligo reynaudii occurring in South African waters is currently managed on a single-unit stock hypothesis. We tested this assumption through a spatial comparison of the morphology throughout the distributional range of the species. Forty-three morphometric characters were measured from 1079 chokka collected off the south coast of South Africa, the west coast of South Africa, and southern Angola. While no significant differences were found in the hard body parts, results from classification analysis showed that though all four types of morphometric attributes (soft body parts, beaks, statoliths, sucker rings) resulted in some separation, the most consistent separation of samples from the three regions was based on soft body part morphometric characters. On average, though dependent on the model, the overall correct classification rate ranged from 0.68?0.99 for males and 0.7?0.99 for females in all three regions. Previous DNA analysis had revealed some genetic differences between west coast and south coast samples, suggesting the confluence of the cold Benguela and warm Agulhas current may act as the approximate point of a phenotypic and possible genetic breakpoint. Finer scale genetic analysis of samples collected across the Benguela?Agulhas confluence reported no significant genetic structuring in this area suggesting environmental heterogeneity and not restriction of genetic flow/isolation as the primary driver of the observed phenotypic divergence.authorsversionPeer reviewe

    Evidence for different thermal ecotypes in range centre and trailing edge kelp populations

    Get PDF
    Determining and predicting species’ responses to climate change is a fundamental goal of contemporary ecology. When interpreting responses to warming species are often treated as a single physiological unit with a single species-wide thermal niche. This assumes that trailing edge populations are most vulnerable to warming, as it is here where a species’ thermal niche will be exceeded first. Local adaptation can, however, result in narrower thermal tolerance limits for local populations, so that similar relative increases in temperature can exceed local niches throughout a species range. We used a combination of common garden temperature heat-shock experiments (8–32 °C) and population genetics (microsatellites) to identify thermal ecotypes of northeast Atlantic range centre and trailing edge populations of the habitat-forming kelp, Laminaria digitata. Using upregulation of hsp70 as an indicator of thermal stress, we found that trailing edge populations were better equipped to tolerate acute temperature shocks. This pattern was consistent across seasons, indicating that between-population variability is fixed. High genetic structuring was also observed, with range centre and trailing edge populations representing highly distinct clusters with little gene flow between regions. Taken together, this suggests the presence of distinct thermal ecotypes for L. digitata, which may mean responses to future warming are more complex than linear range contractions. © 2019 Elsevier B.V

    Targeting Hypoxic Prostate Tumors Using the Novel Hypoxia-Activated Prodrug OCT1002 Inhibits Expression of Genes Associated with Malignant Progression

    Get PDF
    Purpose: To understand the role of hypoxia in prostate tumor progression and to evaluate the ability of the novel unidirectional hypoxia-activated prodrug OCT1002 to enhance the antitumor effect of bicalutamide. Experimental Design: The effect of OCT1002 on prostate cancer cells (LNCaP, 22Rv1, and PC3) was measured in normoxia and hypoxia in vitro. In vivo, tumor growth and lung metastases were measured in mice treated with bicalutamide, OCT1002, or a combination. Dorsal skin fold chambers were used to image tumor vasculature in vivo. Longitudinal gene expression changes in tumors were analyzed using PCR. Results: Reduction of OCT1002 to its active form (OCT1001) decreased prostate cancer cell viability. In LNCaP-luc spheroids, OCT1002 caused increased apoptosis and decreased clonogenicity. In vivo, treatment with OCT1002 alone, or with bicalutamide, showed significantly greater tumor growth control and reduced lung metastases compared with controls. Reestablishment of the tumor microvasculature following bicalutamide-induced vascular collapse is inhibited by OCT1002. Significantly, the upregulation of RUNX2 and its targets caused by bicalutamide alone was blocked by OCT1002. Conclusions: OCT1002 selectively targets hypoxic tumor cells and enhances the antitumor efficacy of bicalutamide. Furthermore, bicalutamide caused changes in gene expression, which indicated progression to a more malignant genotype; OCT1002 blocked these effects, emphasizing that more attention should be attached to understanding genetic changes that may occur during treatment. Early targeting of hypoxic cells with OCT1002 can provide a means of inhibiting prostate tumor growth and malignant progression. This is of importance for the design and refinement of existing androgen-deprivation regimens in the clinic

    Individual and population-level responses to ocean acidification

    Get PDF
    Ocean acidification is predicted to have detrimental effects on many marine organisms and ecological processes. Despite growing evidence for direct impacts on specific species, few studies have simultaneously considered the effects of ocean acidification on individuals (e.g. consequences for energy budgets and resource partitioning) and population level demographic processes. Here we show that ocean acidification increases energetic demands on gastropods resulting in altered energy allocation, i.e. reduced shell size but increased body mass. When scaled up to the population level, long-term exposure to ocean acidification altered population demography, with evidence of a reduction in the proportion of females in the population and genetic signatures of increased variance in reproductive success among individuals. Such increased variance enhances levels of short-term genetic drift which is predicted to inhibit adaptation. Our study indicates that even against a background of high gene flow, ocean acidification is driving individual- and population-level changes that will impact eco-evolutionary trajectories

    Investigation and management of an outbreak of Salmonella Typhimurium DT8 associated with duck eggs, Ireland 2009 to 2011.

    Get PDF
    Salmonella Typhimurium DT8 was a very rare cause of human illness in Ireland between 2000 and 2008, with only four human isolates from three patients being identified. Over a 19-month period between August 2009 and February 2011, 34 confirmed cases and one probable case of Salmonella Typhimurium DT8 were detected, all of which had an MLVA pattern 2-10-NA-12-212 or a closely related pattern. The epidemiological investigations strongly supported a linkbetween illness and exposure to duck eggs. Moreover, S. Typhimurium with an MLVA pattern indistinguishable (or closely related) to the isolates from human cases, was identified in 22 commercial and backyard duck flocks, twelve of which were linked with known human cases. A range of control measures were taken at farm level, and advice was provided to consumers on the hygienic handling and cooking of duck eggs. Although no definitive link was established with a concurrent duck egg-related outbreak of S. Typhimurium DT8 in the United Kingdom, it seems likely that the two events were related. It may be appropriate for other countries with a tradition of consuming duck eggs to consider the need for measures to reduce the risk of similar outbreaks
    corecore